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1 Introduction
In recent years, music and acoustic signal separa-

tion based on nonnegative matrix factorization (NMF)
[1] has been a very active area of signal processing re-
search. NMF for acoustical signals decomposes an in-
put spectrogram into the product of a spectral basis ma-
trix and its activation matrix. In particular, supervised
NMF (SNMF) [2, 3], which includes a priori training
with some sample sounds of a target instrument, can ex-
tract the target signal to some extent. However, for the
case of a mixture consisting of many sources, the source
extraction performance is markedly degraded when only
single-channel observation is available.

Multichannel NMF, which is a natural extension for
multichannel signal, has been proposed as an unsuper-
vised method [4]. However, such an unsupervised sepa-
ration is a difficult problem because the decomposition is
underspecified. Hence, these algorithms involve strong
dependence on initial values and lack robustness.

As another means for addressing multichannel sig-
nal separation, a hybrid method, which concatenates
superresolution-based SNMF after directional cluster-
ing, has been proposed by the authors [5]. This method
uses index information generated by binary masking of
directional clustering to regard the spectral chasms as
unseen observations, and finally reconstructs the target
source components via spectrogram extrapolation us-
ing the supervised bases. In this paper, we extend the
method [5] to be a more generalized form introducing
new parametric cost functions for both separation and
regularization based on β-divergence criterion. Also, we
discuss the optimal divergence for this method.

2 Conventional Method
2.1 SNMF

The unsupervised NMF approaches have difficulty in
clustering the decomposed spectral patterns into a spe-
cific target instrumental sound. To solve this problem,
SNMF has been proposed [2, 3]. In particular, a pena-
lized SNMF (PSNMF), which imposes a penalty term to
force supervised bases and other bases to become uncor-
related with each other, achieves good performance [3].
SNMF consists of two processes, a priori training and
observed signal separation, as described below in detail.

2.1.1 Training Process of Supervision
In SNMF, a priori spectral patterns (bases) should be

trained in advance as a basis dictionary. Hereafter, we
assume that we can obtain a specific solo-played instru-
mental sound, which is the target of the separation task.
The trained bases are constructed by simple NMF as

Ytarget ≃ FQ, (1)

where Ytarget(∈ RΩ×Ts
≥ 0 ) is an amplitude (or a power) spec-

trogram of the specific signal for training, F (∈ RΩ×K
≥ 0 ) is
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a nonnegative matrix that involves bases of the target sig-
nal as column vectors, and Q(∈ RK×Ts

≥ 0 ) is a nonnegative
matrix that corresponds to the activation of each basis of
F . In addition, Ω is the number of frequency bins, Ts
is the number of frames of the training signal, and K is
the number of bases. Therefore, the basis matrix F con-
structed by (1) is used as the supervision (dictionary) of
the target instrumental signal.

To construct the basis matrix F and the activation ma-
trix Q, a cost function is given by

JNMF = D
(
Ytarget∥FQ

)
, (2)

whereD (·∥·) is an arbitrary distance function.

2.1.2 Signal Separation Process
The following equation represents the decomposition

of SNMF using the trained supervision matrix F :

Y ≃ FG +HU , (3)

where Y (∈ RΩ×T
≥ 0 ) is an observed spectrogram,

G(∈ RK×T
≥ 0 ) is an activation matrix that corresponds

to F , H(∈ RΩ×L
≥ 0 ) represents the residual spectral pat-

terns that cannot be expressed by FG, and U (∈ RL×T
≥ 0 ) is

an activation matrix that corresponds to H . Moreover,
T is the number of frames of the observed signal and L
is the number of bases of H . In SNMF, the matrices
G, H , and U are optimized under the condition that
F is known in advance. Hence, ideally, FG represents
the target instrumental components and HU represents
other components different from the target sounds after
the decomposition.

2.1.3 Problem of PSNMF
PSNMF can extract the target signal particularly in the

case of a small number of sources. However, for the
case of a mixture consisting of many sources, the source
extraction performance is markedly degraded because of
the existence of instruments with similar timbre.

2.2 Directional Clustering and Its Hybrid Method
with Superresolution-Based SNMF

Decomposition methods employing directional (spa-
tial) information for the multichannel signal have also
been proposed as unsupervised techniques [6]. These
methods quantize the direction via time-frequency bi-
nary masking. Such directional clustering works well,
even in an underdetermined situation. However, there
is an inherent problem that the sources located in the
same direction cannot be separated only using the direc-
tional information. Furthermore, the extracted signal is
likely to be distorted because the signal has many spec-
tral chasms resulting of the binary masking procedure as
shown in Fig. 1.

To solve this problem, a hybrid method that concate-
nates superresolution-based SNMF after the directional
clustering has been proposed [5]. This SNMF algorithm
explicitly utilizes index information determined by time-
frequency binary masking in directional clustering. For
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Fig. 1 Signal flow of proposed hybrid method.

example, if the target instrument is localized in the cen-
ter cluster along with the interference, superresolution-
based SNMF is only applied to the existing center com-
ponents using index information (see Fig. 1). Therefore,
the spectrogram of the target instrument is reconstructed
using more matched bases because spectral chasms are
treated as unseen, and these chasms have no impact on
the cost function in SNMF. In addition, the components
of the target instrument lost after directional clustering
can be extrapolated using the supervised bases. In other
words, the resolution of the target spectrogram is re-
covered with the superresolution by the supervised ba-
sis extrapolation. Furthermore, a regularization term is
added in the cost function to this SNMF for avoiding the
basis extrapolation error.

3 Superresolution-Based SNMF with
Generalized Cost Function

3.1 Generalized Cost Function Using β-Divergence
In this section, we derive the update rules of

the superresolution-based SNMF with generalized cost
functions. Here, the index matrix I(∈ RΩ×T

{0, 1} ) is obtained
from the binary masking preceding the directional clus-
tering. This index matrix has specific entries of unity
or zero, which indicate whether or not each grid of the
spectrogram belongs to the target directional cluster. The
generalized form of the cost function in superresolution-
based SNMF is defined using the index matrix as

J(θ)=JNMF(θ| Y , I ,F ) + λJreg(G| I ,F ) + µ∥F TH∥2F,
(4)

where θ = {G,H ,U } is the set of objective variables,
λ and µ are the weighting parameters for each cost,
and ∥ · ∥F represents the Frobenius norm. The first
term JNMF represents the main cost for the separation
of superresolution-based SNMF, the second term Jreg
represents the cost for the regularization, and the third
penalty term ∥F TH∥2F indicates that F and H are forced
to become uncorrelated with each other to avoid sharing
the same basis [3].

In this paper, we propose to use β-divergence as the
separation and regularization costs to generalize the cri-
teria of these costs and find optimal divergences fit for
superresolution-based SNMF. The β-divergence is de-
fined as

Dβ(y∥x) =


yβ

β (β − 1)
+

xβ

β
−

yxβ−1

β − 1
(β ∈ R\ {0, 1})

y
(
log y − log x

)
+ x − y (β→ 1)

y
x
− log

y
x
− 1 (β→ 0)

. (5)

This generalized divergence is a family of cost func-
tions parameterized by a single shape parameter β that
takes Itakura-Saito divergence (IS-divergence), genera-
lized Kullback-Leibler divergence (KL-divergence), and
Euclidean distance (EUC-distance) as special cases (β =
0, 1 and 2, respectively). Using (5), we can define the
separation and regularization costs as follows:

JNMF(θ| Y , I ,F )=
∑
ω,tiω,t

 zβNMF
ω,t

βNMF
−

yω,tz
βNMF−1
ω,t

βNMF − 1

 , (6)

Jreg(G| I ,F )=
∑
ω,tiω,t

(∑
k fω,kgk,t

)βreg /βreg, (7)
zω,t=

∑
k fω,kgk,t +

∑
lhω,lul,t, (8)

where yω,t, fω,k, gk,t, hω,l, and ul,t are the nonnegative
entries of matrices Y , F , G, H , and U , respectively,
iω,t is the entry of index matrix I , which maps the val-
ues of one and zero onto the time-frequency (ω-t) re-
gion, · represents the binary complement of each entry
in the index matrix, and βNMF and βreg are the param-
eters that define the shape of divergences of separation
and regularization. Since the divergence JNMF is only
defined in grids whose index is one, SNMF treats only
the valid components except for the spectral chasms. In
addition, the regularization cost Jreg, which corresponds
to the grids of spectral chasms, forces to minimize the
target component FG in proportion to the number of
zeros in index matrix I in each frame. Hence, the super-
vised bases are chosen so as to minimize FG to avoid
the extrapolation error.

3.2 Auxiliary Function and Update Rules
The update rules based on (4), (9), and (13) are ob-

tained by the auxiliary function approach, similarly to
[7]. First, we define the upper bound function for JNMF.
The first term of JNMF is convex for βNMF ≥ 1 and con-
cave for βNMF < 1, and the second term is convex for
βNMF ≥ 2 and concave for βNMF < 2. Applying Jensen’s
inequality to the convex function and tangent line in-
equality to the concave function, we can define the upper
bound function J ′NMF using auxiliary variables αω,t,k≥0,
γω,t,l≥0, η1≥0, η2≥0, and σω,t that satisfy

∑
k αω,t,k=1,∑

l γω,t,l=1, and η1+η2=1 as

JNMF ≤ J ′NMF =
∑
ω,tiω,tP(βNMF)

ω,t , (9)

where

P(βNMF)
ω,t =


N (βNMF)
ω,t −yω,tM(βNMF−1)

ω,t (βNMF<1)
M(βNMF)
ω,t −yω,tM(βNMF−1)

ω,t (1≤βNMF≤2)
M(βNMF)
ω,t −yω,tN (βNMF−1)

ω,t (βNMF>2)
, (10)

M(βNMF)
ω,t =

1
βNMF

{∑
kαω,t,kη1

(
fω,kgk,t/αω,t,kη1

)βNMF

+
∑

lγω,t,lη2
(
hω,lul,t/γω,t,lη2

)βNMF
}
, (11)

N (βNMF)
ω,t =σ

βNMF−1
ω,t

(
zω,t − σω,t

)
+ σ

βNMF
ω,t /βNMF. (12)

Second, we define the upper bound function for Jreg.
This term is convex for βreg ≥ 1 and concave for βreg <
1. Similarly to (9)-(12), we can define the upper bound
function J ′reg using auxiliary variables αω,t,k and ρω,t as

Jreg ≤ J ′reg =
∑
ω,tiω,tS

(βreg)
ω,t , (13)
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Fig. 2 Scores of each part.

where

S(βreg)
ω,t =

R(βreg)
ω,t (βreg<1)

Q(βreg)
ω,t (1≤βreg)

, (14)

Q(βreg)
ω,t =

∑
kαω,t,k

(
fω,kgk,t/αω,t,k

)βreg /βreg, (15)

R(βreg)
ω,t =ρ

βreg−1
ω,t

(∑
k fω,kgk,t − ρω,t

)
+ ρ
βreg
ω,t /βreg. (16)

Third, we define the upper bound function for
∥F TH∥2F using auxiliary variables δk,l,ω ≥ 0 that satisfy∑
ω δk,l,ω=1 as

∥F TH∥2F ≤
∑

k,l,ω

(
f 2
ω,kh2

ω,l/δk,l,ω
)
. (17)

Finally, using (9), (13), and (17), we can define the
upper bound function J ′(θ, θ̂) as

J ′(θ, θ̂) = J ′NMF +J ′reg +
∑

k,l,ω

(
f 2
ω,kh2

ω,l/δk,l,ω
)
, (18)

where θ̂ is the set of auxiliary variables. The update rules
are obtained from the derivative of J ′ w.r.t. each objec-
tive variable and substitution of equality condition w.r.t.
each auxiliary variable as follows:

gk,t ←gk,t

 ∑ω iω,tyω,t fω,krβNMF−2
ω,t∑

ω iω,t fω,kzβNMF−1
ω,t + λvk,t

φ(βNMF)

, (19)

hω,l ← hω,l

 ∑t iω,tyω,tul,tr
βNMF−2
ω,t∑

t iω,tul,tz
βNMF−1
ω,t + µwω,l

φ(βNMF)

, (20)

ul,t ← ul,t

∑ω iω,tyω,thω,lr
βNMF−2
ω,t∑

ω iω,thω,lz
βNMF−1
ω,t

φ(βNMF)

, (21)

where rω,t, vk,t, wω,l, and φ (β) are given by

rω,t =
∑

k′ fω,k′gk′,t +
∑

l′hω,l′ul′,t, (22)

vk,t =
∑
ωiω,t fω,k

(∑
k′fω,k′gk′,t

)βreg , (23)
wω,l =

∑
k fω,k
∑
ω′ fω′,khω′,l, (24)

φ(β) =


1/(2 − β) (β < 1)
1 (1 ≤ β ≤ 2)
1/(β − 1) (2 < β)

. (25)

4 Experiments
4.1 Optimal Divergence and Regularization for

Superresolution-Based SNMF
4.1.1 Experimental Conditions

In this experiment, we compared some evaluation
scores with various βNMF and βreg to find the optimal
divergence and regularization fit for superresolution-
based SNMF. We compared the simple PSNMF [3] and
the hybrid method with superresolution-based SNMF by

Table 1 Compositions of musical instruments
Dataset Melody 1 Melody 2 Midrange Bass
No. 1 Oboe Flute Piano Trombone
No. 2 Trumpet Violin Harpsichord Fagotto
No. 3 Clarinet Horn Piano Cello

setting four divergences and regularizations, namely, β =
0, 1, 2, and 3. We used the same divergence (βNMF) in the
training and separation processes. In this experiment,
we used stereo signals containing four melody parts (de-
picted in Fig. 2) with three compositions of instruments
shown in Table 1. These signals were artificially gen-
erated by a MIDI synthesizer, and the observed signals
Y were produced by mixing four sources with the same
power. The target source is always located in the center
direction along with another interfering source, and there
are two sources in the left- and right-hand sides, which
are located at θ = ±15◦based on a sine law. In addition,
we used the same MIDI sounds of the target instruments
as supervision for a priori training. The training sounds
contained two octave notes that cover all notes of the
target signal in the observed signal. The spectrograms
were computed using a 92-ms-long rectangular window
with a 46-ms overlap shift. The number of iterations for
the training was 500 and that for the separation was 400.
Moreover, the number of clusters of used in directional
clustering was 3, the number of a priori bases was 100,
and the number of bases for matrix H was 30. In this
experiment, the weighting parameters λ and µ were ex-
perimentally determined.

4.1.2 Experimental Results and Discussion
We used the signal-to-distortion ratio (SDR), source-

to-interference ratio (SIR), and sources-to-artifacts ratio
(SAR) defined in [8] as the evaluation scores. SDR in-
dicates the quality of the separated target sound, SIR in-
dicates the degree of separation between the target and
other sounds, and SAR indicates the absence of artificial
distortion.

Figure 3 shows the average SDR, SIR, and SAR for
each divergence and each regularization, where four in-
struments are shuffled with 12 combinations in each
composition. Therefore, these results are the averages
of 36 input signal patterns. From the SDR in Fig. 3, we
can confirm that the EUC-distance-based cost function
(βNMF) is an optimal divergence for the hybrid method
with superresolution-based SNMF. This is of great in-
terest because EUC-distance-based NMF cannot achieve
the best performance for common music source separa-
tion, but instead KL-divergence is often used (as also
noted in many papers, e.g., [9]). In fact, SDR in Fig. 3
indicates that KL-divergence is the best divergence for
PSNMF. In addition, we can confirm that the regula-
rization with KL-divergence is slightly better than the
other divergences but the difference is not obvious.

In summary, we can assert as follows.

• The optimal divergence of separation (βNMF) differs
between simple SNMF and superresolution-based
SNMF, regardless of the type of regularization.

• We can speculate that this marked shift of opti-
mal divergence in the SNMF methods is due to
balance of separation and extrapolation abilities;
this is because superresolution-based SNMF should
achieves both separation and extrapolation simulta-
neously, as described in Sect. 2.2.

The latter issue will be addressed in the next subsection.
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Fig. 3 Average scores: (a) shows SDR, (b) shows SIR, and (c) shows SAR for each divergence and regularization.
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Fig. 4 Average SAR for each divergence. This score shows
that extrapolation ability decreases when βNMF is close to zero.

4.2 Extrapolation Ability in Superresolution-Based
SNMF

4.2.1 Experimental Conditions
To quantify the extrapolation ability, we applied

superresolution-based SNMF to the binary-masked sig-
nals that contain only the target instrument. The binary
masks were made by directional clustering, which was
the same as the previous experiments. Therefore, the
SAR of this experiment indicates the net extrapolation
ability. The parameter βNMF was set to 0, 1, 2, 3, and 4.

4.2.2 Experimental Results and Discussion
Figure 4 shows the average SAR of 36 input sig-

nal patterns for each divergence. From this result,
superresolution-based SNMF loses the extrapolation
ability with decreasing βNMF. If βNMF is close to zero,
the spectral bases become more sparsity-aware, and this
property is suitable for normal NMF-based music source
separation. However, for superresolution-based SNMF,
which attempts to fit the trained bases using spectral
components except chasms, sparsity-aware bases are not
suitable because it is difficult to extrapolate the tar-
get signal component using such sparse bases. There-
fore, it can be confirmed that the optimal divergence for
superresolution-based SNMF is shifted to EUC-distance
rather than KL-divergence because of the trade-off be-
tween separation and extrapolation abilities, as illus-
trated in Fig. 5.

5 Conclusions
In this paper, we address a stereo signal separation

problem and derive the generalized multiple update rules
for superresolution-based SNMF based on β-divergence.
Also, we discuss about the optimal divergence for the

P
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Total performance
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Fig. 5 Trade-off between separation and extrapolation abili-
ties. Total performance gets highest when βNMF = 2.

hybrid method based on the trade-off between separa-
tion and extrapolation abilities. From the experimental
results, it can be confirmed that EUC-distance is an op-
timal divergence for superresolution-based SNMF.
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