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1 Introduction where Yiarget (€ RY;"™) is an amplitude spectrogram
) of a specific signal for training, F(€ R?:¥) is a non-
In recent years, source separation based on non- negative matrix that involves bases of the target sig-
negative matrix factorization (NMF) [1], which is a nal as column vectors, and Q(€ RX*™) is a nonneg-
type of sparse representation algorithm, has been a ative matrix that corresponds to the activation of
very active area of signal processing research. NMF each basis of F. In addition, Q is the number of
for acoustical signals decomposes an input spectro- frequency bins, T is the number of frames of the
gram into a product of a spectral basis matrix and training signal, and K is the number of bases.
its activation matrix. In particular, NMF has been a In the decomposition of NMF, the cost function
convincing candidate used for source separation [2] can be constructed using some measures of the dis-
in musical signal processing with a monaural format. tance between Y and FQ as
The methods of source separation based on NMF
are roughly classified into unsupervised and super- JInvr = D(Y|FQ), (2)

vised algorithms. The former method attempts the
separation accompanied by various constraints, e.g.,
proposed in Refs. [2, 3]. However, these techniques
have a problem in spectral pattern clustering owing
to the blind approach. The latter method includes
a priori training, requiring some sample sounds of
a target instrument. In particular, a supervised
approach that introduces a penalized condition in

where D (+|-) is an arbitrary distance function, e.g.,
Itakura-Saito divergence (IS divergence), and gener-
alized Kullback Leibler divergence (KL divergence).
In this study, we propose to use KL divergence in
the cost function. The multiplicative update rules
for F and @ are given by

fw,kzts Yuw,t Akt (Zk/ fw,k’Qk’,ts )_1

oder to prevent some absences of the target sound furk . (3
achieves a good performance [4]. However, such su- ’ Dot Gkt

pervised techniques have a critical problem that a L
mismatch between the spectra trained in advance Qht, < Wit Dot Joosk Qo foo e 2.) . (4)
and the target actual sound reduces the accuracy of 2w Juk

source separation.

In this paper, we propose a new advanced super-
vised NMF algorithm that includes a deformable
term for the trained spectral bases and constraints 2.3 Signal separation process
for making the bases to fit into the real instrumental
sound. The experimental results show that the pro-
posed method outperforms the conventional method
[4] even with treating a mixture of real instruments.

where y,,+., fu .k, and g, are the nonnegative en-
tries of the matrices Y, F', and Q, respectively.

The following equation represents the decomposi-
tion process of CSNMF using the trained supervi-
sion F":

Y ~ FG + HU, (5)

2 Conventional method ,
where Y (€ RZ;") is an observed spectrogram,
2.1 Overview of constrained supervised G(€ RE:T) is an activation matrix that corresponds
NMF to F, H(€ R%¥) is the residual spectral patterns

>0

that cannot be expressed by FG, and U (€ R:;T) is

an activation matrix that corresponds to H. Hence,
F'G represents the target instrumental components,

In the unsupervised approaches, it has difficultly
in clustering the decomposed spectral patterns into

a specific target instrumental sound. Furthermore, .
each basis may be threatened to include a multi- and HU represents other different components from

instrumental spectral pattern. To solve this prob- the target sounds ideally. Moreover, L is the number
lem, constrained supervised NMF (CSNMF) has of frames of the observed spectrogram.
been. proposed as a supervised mgthoq [4] CSNMF 2.4 Cost function with constrained condi-
consists of two processes, a priori training and ob- tion

d signal ti described below in de- o .
served signal separation, as described below in de After the decomposition by Eq. (5), FG is ex-

tail. pected to represent the spectrogram that corre-
2.2 Training process of supervision sponds to the signal known in advance, and HU
expresses the spectrogram of other signals. How-
ever, if some of the spectral patterns in F and H are
the same, the corresponding activations separately
appear in G and U, degrading the separation per-
formance. To cope with this problem, a constraint
is imposed in the cost functions of CSNMF as

Jossmr = D (Y|FG + HU) 4 p|FYH|g, (6)

In CSNMF, as the supervision, a priori spectral
patterns (bases) should be trained in advance to
achieve source separation. Hereafter, we assume
that we can obtain the instrumental sounds, which
is the target of the separation task. The trained
bases are constructed by NMF as

Kargct A FQv (1)

* “Evaluation of Separation Accuracy for Various Real Instruments Based on Supervised NMF with Basis
Deformation,” by Daichi Kitamura, Hiroshi Saruwatari, Kiyohiro Shikano (Nara Institute of Science and
Technology), Kazunobu Kondo, Yu Takahashi (Yamaha Corporation).
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where p is weighting parameter, and ||- || represents

Frobenius norm.

2.5 Multiplicative update rules of CSNMF
The update rules for Eq. (6) are given by

e gk,tzwfw,kyw,t(Zk/fw,k’gk’,t+Zl/hw,l’ul’,t)_1

' Zw fw,k ’
(7)

By, | thZtyw,tul,t(Zk'fw7k’glc’7t+Zl’hw7lful’,t)_1

' Dorur e F20 Y fokr 2o Jor ke (8;

ULty P 1Yt O s fo ke Grr 6Dy o 1y 1) h
Uyt < )

' Zw hw,l
9)

where gy ¢, ho 1, and u;; are the nonnegative entries
of the matrices G, H, and U, respectively.

9k

2.6 Problem of supervised method

The supervised techniques such as CSNMF in-
volve an inherent problem that a mismatch between
the bases trained in advance and the target actual
sound reduces the accuracy of separation. Even if
the trained bases are constructed using the same
type of instrument as the target sound, the spectra
are different according to, e.g., an individual style of
playing and the timbre individuality for each instru-
ment. Therefore, it is impossible to provide perfect
supervision and to predict more realistic supervision
in practice. To solve this problem, in the next sec-
tion, we propose a new advanced CSNMF that in-
cludes a deformable term for the trained bases and
the additional constraint for making the bases to fit
into the target sound.

3 Proposed method

3.1 Supervised NMF with basis deforma-
tion

The proposed method also uses the pre-recorded
sound that is similar to the target instrument and
available in advance for a priori training, and com-
poses the trained bases F'. For instance, when the
target signal is the real specific instrumental sound,
it is allowed to use MIDI sound of the same type
of instrument because we can easily generate the
training sound via MIDI. The decomposition model
is represented as

Y~(F+D)G+ HU, (10)
where D(€ R%¥) is a basis matrix which shares the
activation matrix G with F'. In this decomposition,
to adapt the bases into the target sound that can-
not be represented by F', another basis matrix D is
imposed as a deformation term for F'. Furthermore,
D is constructed under the following constraints,

Nfuwk +dor >0, (11)
0<n<l, (12)
gk,t 2 07 (13)
hw,l Z 07 (14)
Ut 2 07 (15)
L S T e SUER

where d,, 1 is the entry of the matrix D, which prob-
ably has positive and negative values, and n is the
parameter that represents an allowable range of neg-
ative deformation of F'.

3.2 Cost function with constraints

Since the deformation term D shares the acti-
vation G with F', D can be threatened to include
other instrumental components that simultaneously
sound with the target such as unison. This yields a
nonnegligible leakage of the undesired instrumental
components into the resultant output (F + D) G.
To avoid this phenomenon, the penalized terms for
orthogonalization are imposed in the cost function
as

J=D(Y|(F+D)G+HU)+u,|F'D|3
+uﬂF¢HW%+uﬂﬂﬂfﬂ@+udKF+DY5¥ﬁé

where w1, 2, s, and ug are the wighting parame-
ters for each penalized term. These penalized terms
indicate that F', D, and H are forced to become
uncorrelated each other, and the target component
bases (F' + D) and other component bases H also
become uncorrelated each other.

3.3 Multiplicative update rules

In this section, we derive the update rules based
on Eq. (16). Equation (16) can be rewritten as

j:Zw7t (_yw,t IOg Tw,t + Tw,t + Cj)
1Y p (D Foote oo ) 1123y (o feo i Pest)
+N32k,z(dew,khw,l)2+ﬂ4zk,l(Ewbw,khw,l)2 )

(17)

where 7, ¢, b, i, and C s are given by
Twt = D pbw kGt + DR Ui, (18)
bw,k = fw,k: + dw7k7 (19)
C7 =Yuwt108Yut — Yut- (20)

Since it is difficult to analytically derive the optimal
D, G, and H that minimize Eq. (17), we define an
auxiliary function, witch represents the upper bound
of J as described bellow.

First, for the logarithmic term (hereinafter, re-
ferred to as Jiog) in the first term of the right-
hand side in Eq. (17), the upper bound function
Q1og is defined using auxiliary variables ay ., >0,
B1,w,t=>0, 1120, and 72>0 that satisfy >, o =1,
> 1 Biwe=1, and 71 +7y2=1. Applying Jensen’s in-
equality to this, we have

Jog == Yuw,t108 7w ¢
<Yt D g1 Vw,tBlw,t log (A + B) + Cg,,
Yoo t D 1 O t Bt (log A7 +log B72)+Cr
= Qlog; (21)
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where A, B, Cyz,,, and C./Ylog
A = B1w,tbo kG ts
B = agw theiut,

le% Zklakwtﬂlwtlogakwtﬁlwt,

le% le%—zk 10 0, B1,00,¢ (Y1108 11 +72l0g 72).

are given by

N~ o~
N NN
=W N
NN

(25)

The equality in Eq. (21) holds if and only if the aux-
iliary variables are set to as follows:

be kG ¢
Ohwt = =" 26
Pt Zk’ w, k' gk’ t ( )
he g
L L E 27
st = 5 s 7
A
= 28
71 A+Ba ( )
S (29)
T ATR

Second, for the penalized terms (hereinafter, re-
ferred to as Jp,) in Eq. (17), the upper bound func-
tion @)p is defined using the auxiliary variables
0wkt e >0, €01 >0, 0,5:>0, and A, k>0 that
satisfy >, 0w k=1, D, €w k=1, >, b k=1, and
> Awky=1. Similarly to Eq. (21), we obtain

Tp :lek/,k(zwfw,k/dw,k)Q +M2Zk,l (waw,khw,l)z
+H3Zk,l (dew,khw,l)2+ﬂ4zk,l(zwbw,khw,l)2

f2k’d2k fzkh2z
<D 4 ke U:; S Y ket : kf;
w
di; i l b kh2 l
+N32k,lw z = 4Eklw U;\ ki’
=@y, (30)

where the equality in Eq. (30) holds if and only if
the auxiliary variables are set to as follows:

Ow k' ke = %7 (31)
Aokl = % (34)

Finally, by using Eq. (21) and Eq. (30), we can
define the upper bound function J7* for J as

J < jJr :Zwﬂg(Qlog + 1o+ CJ) + Qp' (35)

The update rules for J+ with respect to each vari-
able are determined by setting the gradient to zero.
From 071 /dd, 1 = 0, we obtain

Yoot Ok 0,6 )1 Bl,w,t V1
Zt<9k,t— o t oty Blw )

bwk

2
wkdwk wk w,l

241 Zk/ 2u321

K,
W7 Wv N

+ 244,

2
kah’w,l

=0. 36
Aw k)l (36)
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By substituting Egs. (26)-(29) and Egs. (31
into Eq. (36), we can rewrite Eq. (36) as

)-(34)

t9k,
Ztgk’t +’Uw,k +2M4Elhw7lzw'bw/7khwl,l = Zt%v

w,t

(37)
where v, i is given by
Voo ke =201 porfeo kery ot foot ke st et
F2p3) 2 he Do derkh- (38)
Thanks to the constraints Egs. (11)-(15), all the

terms in Eq. (37) except v, are nonnegative. In
addition, v, can become both positive and nega-
tive values because d,, ; has a possibility to be both
positive and negative. For keeping the nonnegativ-
ity of Eq. (37), we divide the update rules of d,, ;, in
cases that v, ;>0 and v, 1<0. If v,, x>0, both sides
of Eq. (37) are nonnegative. Then we can obtain the
update rule by multiplying both sides of Eq. (37) by
Nfok + dok, as

(nfw,k + du.uk) Zty%tglc,ﬂ";}
Dot Okt TV k+2004) Pt d bk her
(Vo > 0). (39)

dw,k:<_ _nfw,k:

If v, 1 <0, we also have the update rule by transpos-
ing v,, 1 to the right-hand side and multiplying both
sides of Eq. (37) by nfu.k + du i

- (nfw,k’ + dw,k)(ztyw,tgk,tr;}t - Uw,k)
k
D1kt 2014 1P i3 Do kher
(Ve < 0). (40)

de

_nfw,k

Similarly to Egs. (39) and (40), the update rules of
the other variables are obtained as follows:

-1
UJ l Ztyw tUl trw t

he,
Ztult+2ﬂ22kfw kDo foor ko1 FWe 14501
(ww,k > O)a (41)
h w l (Ztyw tUl trw}f Wy l)
Ztult+2ﬂ22kfw kD Jer kP 45w
(wok < 0), (42)
k.t Zwbw,kyw,trojlt
g i +— ’ 2 s 43
" Zw bka ( )
ug ¢ thw 1Yw tT(:vlt
Uy —— —, 44
b Zw hw,l ( )
where w,,; and s,,; are given by
Weo,t = 203 oo ke D2y e ket (45)
Sl = 204 b kD bur kb (46)

4 Evaluation experiment

4.1 Experimental conditions

To confirm the effectiveness of the proposed al-
gorithm, we compared the conventional method
(CSNMF) and new NMF with Egs. (39)-(44), ap-
plying them to the separation task for monaural
multiple instrumental sources. In this experiment,
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Table 1 Evaluation scores of conventional and proposed methods

Target Other Conventional method Proposed method
sound sound SDR SIR SAR SDR SIR SAR
Piano Clarinet 2.4 8.4 4.3 8.4 14.8 9.6
Piano Trombone 3.1 15.8 3.5 11.0 24.4 11.2
Clarinet Flute 0.1 1.8 7.3 0.7 2.6 7.2
Clarinet Trombone 3.2 14.6 3.7 9.6 23.9 9.8
Flute Piano 5.8 12.8 7.0 7.0 14.9 7.9
Trombone  Clarinet 2.1 12.4 2.8 4.7 19.3 4.9

we four types of real instruments, namely, piano,

4 4
clarinet, flute, and trombone, as the target sound. - (a) - - 7(b)7 ]
These sound sources were separately recorded, and L3 - = L3 -
the observed signals Y were produced by mixing two Bfa e — e —| bl | b
sources selected from four sources with the input TR = :.;:E; — o} L S-S
SNR of 0 dB. In addition, we used artificial MIDI  84EESEa ce—e i B4+ | b |+
sounds of the target instruments as supervision for SE=asi=rsi—l . rfj? ﬁ: l:—["_lﬁ
a priori training. The training sounds contain two = 3 3 U— 7 3
octave notes that cover all notes of the target signal Time [s] Time [s]
in the observed signal. The sampling frequency of all 4 (c) 4 (d)
signals was 44.1 kHz. The spectrograms were com- ¥ O :
puted using a 92-ms long rectangle window with a = = .
46-ms overlap shift. The number of iterations for the g2 ¥: 4 “EE
training was 500 and for separation was 400. More- e e g |-
over, the number of a priori bases was 100, and the gl = e e Pl =
number of bases for the matrix H was 30. In this ex- 0 : ot =
periment, the wighting parameters were empirically LR s 34 T2 s 4

determined. . . .
We used the signal-to-distortion ratio (SDR), Flg. 1 Spectrograms of (a) observed sgnal consist-
source-to-interference ratio (SIR), and sources-to- ing of piano and trombone, (b) oracle signal of the
artifacts ratio (SAR) defined in Ref. [5] as the evalu-  target piano signal, (c) extracted piano signal by
ation scores. SDR indicates the quality of separated conventional method, and (d) extracted piano sig-
target sound. SIR indicates the degree of separation nal by proposed method.
between target and other sounds. SAR indicates ab-
sence of artificial distortion such as musical noise.
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