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1 Introduction

In recent years, source separation based on non-
negative matrix factorization (NMF) [1], which is a
type of sparse representation algorithm, has been a
very active area of signal processing research. NMF
for acoustical signals decomposes an input spectro-
gram into a product of a spectral basis matrix and
its activation matrix. In particular, NMF has been a
convincing candidate used for source separation [2]
in musical signal processing with a monaural format.
The methods of source separation based on NMF

are roughly classified into unsupervised and super-
vised algorithms. The former method attempts the
separation accompanied by various constraints, e.g.,
proposed in Refs. [2, 3]. However, these techniques
have a problem in spectral pattern clustering owing
to the blind approach. The latter method includes
a priori training, requiring some sample sounds of
a target instrument. In particular, a supervised
approach that introduces a penalized condition in
oder to prevent some absences of the target sound
achieves a good performance [4]. However, such su-
pervised techniques have a critical problem that a
mismatch between the spectra trained in advance
and the target actual sound reduces the accuracy of
source separation.
In this paper, we propose a new advanced super-

vised NMF algorithm that includes a deformable
term for the trained spectral bases and constraints
for making the bases to fit into the real instrumental
sound. The experimental results show that the pro-
posed method outperforms the conventional method
[4] even with treating a mixture of real instruments.

2 Conventional method

2.1 Overview of constrained supervised
NMF

In the unsupervised approaches, it has difficultly
in clustering the decomposed spectral patterns into
a specific target instrumental sound. Furthermore,
each basis may be threatened to include a multi-
instrumental spectral pattern. To solve this prob-
lem, constrained supervised NMF (CSNMF) has
been proposed as a supervised method [4]. CSNMF
consists of two processes, a priori training and ob-
served signal separation, as described below in de-
tail.

2.2 Training process of supervision

In CSNMF, as the supervision, a priori spectral
patterns (bases) should be trained in advance to
achieve source separation. Hereafter, we assume
that we can obtain the instrumental sounds, which
is the target of the separation task. The trained
bases are constructed by NMF as

Ytarget ≃ FQ, (1)
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where Ytarget(∈ RΩ×Ts
≥ 0 ) is an amplitude spectrogram

of a specific signal for training, F (∈ RΩ×K
≥ 0 ) is a non-

negative matrix that involves bases of the target sig-
nal as column vectors, and Q(∈ RK×Ts

≥ 0 ) is a nonneg-
ative matrix that corresponds to the activation of
each basis of F . In addition, Ω is the number of
frequency bins, Ts is the number of frames of the
training signal, and K is the number of bases.
In the decomposition of NMF, the cost function

can be constructed using some measures of the dis-
tance between Y and FQ as

JNMF = D (Y |FQ) , (2)

where D (·|·) is an arbitrary distance function, e.g.,
Itakura-Saito divergence (IS divergence), and gener-
alized Kullback Leibler divergence (KL divergence).
In this study, we propose to use KL divergence in
the cost function. The multiplicative update rules
for F and Q are given by

fω,k←
fω,k

∑
ts
yω,tsqk,ts (

∑
k′ fω,k′qk′,ts)

−1∑
ts
qk,ts

, (3)

qk,ts←
qk,ts

∑
ωyω,tsfω,k (

∑
k′ fω,k′qk′,ts)

−1∑
ω fω,k

, (4)

where yω,ts , fω,k, and qk,ts are the nonnegative en-
tries of the matrices Y , F , and Q, respectively.

2.3 Signal separation process

The following equation represents the decomposi-
tion process of CSNMF using the trained supervi-
sion F :

Y ≃ FG+HU , (5)

where Y (∈ RΩ×T
≥ 0 ) is an observed spectrogram,

G(∈ RK×T
≥ 0 ) is an activation matrix that corresponds

to F , H(∈ RΩ×L
≥ 0 ) is the residual spectral patterns

that cannot be expressed by FG, and U(∈ RL×T
≥ 0 ) is

an activation matrix that corresponds to H. Hence,
FG represents the target instrumental components,
andHU represents other different components from
the target sounds ideally. Moreover, L is the number
of frames of the observed spectrogram.

2.4 Cost function with constrained condi-
tion

After the decomposition by Eq. (5), FG is ex-
pected to represent the spectrogram that corre-
sponds to the signal known in advance, and HU
expresses the spectrogram of other signals. How-
ever, if some of the spectral patterns in F andH are
the same, the corresponding activations separately
appear in G and U , degrading the separation per-
formance. To cope with this problem, a constraint
is imposed in the cost functions of CSNMF as

JCSNMF = D (Y |FG+HU) + µ∥FTH∥F, (6)
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where µ is weighting parameter, and ∥·∥F represents
Frobenius norm.

2.5 Multiplicative update rules of CSNMF

The update rules for Eq. (6) are given by

gk,t←
gk,t

∑
ωfω,kyω,t(

∑
k′fω,k′gk′,t+

∑
l′hω,l′ul′,t)

−1∑
ω fω,k

,

(7)

hω,l←
hω,l

∑
tyω,tul,t(

∑
k′fω,k′gk′,t+

∑
l′hω,l′ul′,t)

−1∑
tul,t+2µ

∑
k′fω,k′

∑
ω′fω′,k′hω′,l

,

(8)

ul,t←
ul,t

∑
ωhω,lyω,t(

∑
k′fω,k′gk′,t+

∑
l′hω,l′ul′,t)

−1∑
ω hω,l

,

(9)

where gk,t, hω,l, and ul,t are the nonnegative entries
of the matrices G, H, and U , respectively.

2.6 Problem of supervised method

The supervised techniques such as CSNMF in-
volve an inherent problem that a mismatch between
the bases trained in advance and the target actual
sound reduces the accuracy of separation. Even if
the trained bases are constructed using the same
type of instrument as the target sound, the spectra
are different according to, e.g., an individual style of
playing and the timbre individuality for each instru-
ment. Therefore, it is impossible to provide perfect
supervision and to predict more realistic supervision
in practice. To solve this problem, in the next sec-
tion, we propose a new advanced CSNMF that in-
cludes a deformable term for the trained bases and
the additional constraint for making the bases to fit
into the target sound.

3 Proposed method

3.1 Supervised NMF with basis deforma-
tion

The proposed method also uses the pre-recorded
sound that is similar to the target instrument and
available in advance for a priori training, and com-
poses the trained bases F . For instance, when the
target signal is the real specific instrumental sound,
it is allowed to use MIDI sound of the same type
of instrument because we can easily generate the
training sound via MIDI. The decomposition model
is represented as

Y ≃ (F +D)G+HU , (10)

where D(∈ RΩ×K
≥ 0 ) is a basis matrix which shares the

activation matrix G with F . In this decomposition,
to adapt the bases into the target sound that can-
not be represented by F , another basis matrix D is
imposed as a deformation term for F . Furthermore,
D is constructed under the following constraints,

ηfω,k + dω,k ≥ 0, (11)

0 ≤ η ≤ 1, (12)

gk,t ≥ 0, (13)

hω,l ≥ 0, (14)

ul,t ≥ 0, (15)

where dω,k is the entry of the matrix D, which prob-
ably has positive and negative values, and η is the
parameter that represents an allowable range of neg-
ative deformation of F .

3.2 Cost function with constraints

Since the deformation term D shares the acti-
vation G with F , D can be threatened to include
other instrumental components that simultaneously
sound with the target such as unison. This yields a
nonnegligible leakage of the undesired instrumental
components into the resultant output (F +D)G.
To avoid this phenomenon, the penalized terms for
orthogonalization are imposed in the cost function
as

J =D(Y |(F+D)G+HU)+µ1∥FTD∥2F
+µ2∥FTH∥2F+µ3∥DTH∥2F+µ4∥(F+D)

T
H∥2F,

(16)

where µ1, µ2, µ3, and µ4 are the wighting parame-
ters for each penalized term. These penalized terms
indicate that F , D, and H are forced to become
uncorrelated each other, and the target component
bases (F +D) and other component bases H also
become uncorrelated each other.

3.3 Multiplicative update rules

In this section, we derive the update rules based
on Eq. (16). Equation (16) can be rewritten as

J =
∑

ω,t (−yω,t log rω,t + rω,t + CJ )

+µ1

∑
k,k′(

∑
ωfω,k′dω,k)

2
+µ2

∑
k,l(

∑
ωfω,khω,l)

2

+µ3

∑
k,l(

∑
ωdω,khω,l)

2
+µ4

∑
k,l(

∑
ωbω,khω,l)

2
,

(17)

where rω,t, bω,k, and CJ are given by

rω,t =
∑

kbω,kgk,t +
∑

lhω,lul,t, (18)

bω,k = fω,k + dω,k, (19)

CJ = yω,t log yω,t − yω,t. (20)

Since it is difficult to analytically derive the optimal
D, G, and H that minimize Eq. (17), we define an
auxiliary function, witch represents the upper bound
of J as described bellow.
First, for the logarithmic term (hereinafter, re-

ferred to as Jlog) in the first term of the right-
hand side in Eq. (17), the upper bound function
Qlog is defined using auxiliary variables αk,ω,t≥0,
βl,ω,t≥0, γ1≥0, and γ2≥0 that satisfy

∑
k αk,ω,t=1,∑

l βl,ω,t=1, and γ1+γ2=1. Applying Jensen’s in-
equality to this, we have

Jlog=−yω,tlog rω,t

≤−yω,t

∑
k,lαk,ω,tβl,ω,t log (A+B) + CJlog

≤−yω,t

∑
k,lαk,ω,tβl,ω,t(logA

γ1+logBγ2)+C ′
Jlog

≡ Qlog, (21)
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where A, B, CJlog
, and C ′

Jlog
are given by

A = βl,ω,tbω,kgk,t, (22)

B = αk,ω,thω,lul,t, (23)

CJlog
=−

∑
k,lαk,ω,tβl,ω,t logαk,ω,tβl,ω,t, (24)

C ′
Jlog

=CJlog
−
∑

k,lαk,ω,tβl,ω,t(γ1log γ1+γ2log γ2).

(25)

The equality in Eq. (21) holds if and only if the aux-
iliary variables are set to as follows:

αk,ω,t =
bω,kgk,t∑
k′ bω,k′gk′,t

, (26)

βl,ω,t =
hω,lul,t∑
l′ hω,l′ul′,t

, (27)

γ1 =
A

A+B
, (28)

γ2 =
B

A+B
. (29)

Second, for the penalized terms (hereinafter, re-
ferred to as Jp) in Eq. (17), the upper bound func-
tion Qp is defined using the auxiliary variables
δω,k′,k≥ 0, ϵω,k,l≥ 0, θω,k,l≥ 0, and λω,k,l≥ 0 that
satisfy

∑
k δω,k′,k=1,

∑
l ϵω,k,l=1,

∑
l θω,k,l=1, and∑

l λω,k,l=1. Similarly to Eq. (21), we obtain

Jp =µ1

∑
k′,k(

∑
ωfω,k′dω,k)

2
+µ2

∑
k,l(

∑
ωfω,khω,l)

2

+µ3

∑
k,l(

∑
ωdω,khω,l)

2
+µ4

∑
k,l(

∑
ωbω,khω,l)

2

≤µ1

∑
k′,k,ω

f2
ω,k′d2ω,k

δω,k′,k
+µ2

∑
k,l,ω

f2
ω,kh

2
ω,l

ϵω,k,l

+µ3

∑
k,l,ω

d2ω,kh
2
ω,l

θω,k,l
+µ4

∑
k,l,ω

b2ω,kh
2
ω,l

λω,k,l

≡Qp, (30)

where the equality in Eq. (30) holds if and only if
the auxiliary variables are set to as follows:

δω,k′,k =
fω,k′dω,k∑
ω′ fω′,k′dω′,k

, (31)

ϵω,k,l =
fω,khω,l∑
ω′ fω′,khω′,l

, (32)

θω,k,l =
dω,khω,l∑
ω′ dω′,khω′,l

, (33)

λω,k,l =
bω,khω,l∑
ω′ bω′,khω′,l

. (34)

Finally, by using Eq. (21) and Eq. (30), we can
define the upper bound function J + for J as

J ≤ J +=
∑

ω,t(Qlog + rω,t + CJ ) +Qp. (35)

The update rules for J + with respect to each vari-
able are determined by setting the gradient to zero.
From ∂J +/∂dω,k = 0, we obtain∑

t

(
gk,t−

yω,tαk,ω,t

∑
lβl,ω,tγ1

bω,k

)
+2µ1

∑
k′
f2
ω,k′dω,k

δω,k′,k
+2µ3

∑
l

dω,kh
2
ω,l

θω,k,l

+ 2µ4

∑
l

bω,kh
2
ω,l

λω,k,l
= 0. (36)

By substituting Eqs. (26)-(29) and Eqs. (31)-(34)
into Eq. (36), we can rewrite Eq. (36) as∑

tgk,t+vω,k+2µ4

∑
lhω,l

∑
ω′bω′,khω′,l=

∑
t

yω,tgk,t
rω,t

,

(37)

where vω,k is given by

vω,k=2µ1

∑
k′fω,k′

∑
ω′fω′,k′dω′,k′

+2µ3

∑
lhω,l

∑
ω′dω′,khω′,l. (38)

Thanks to the constraints Eqs. (11)-(15), all the
terms in Eq. (37) except vω,k are nonnegative. In
addition, vω,k can become both positive and nega-
tive values because dω,k has a possibility to be both
positive and negative. For keeping the nonnegativ-
ity of Eq. (37), we divide the update rules of dω,k in
cases that vω,k≥0 and vω,k<0. If vω,k≥0, both sides
of Eq. (37) are nonnegative. Then we can obtain the
update rule by multiplying both sides of Eq. (37) by
ηfω,k + dω,k, as

dω,k←
(ηfω,k + dω,k)

∑
tyω,tgk,tr

−1
ω,t∑

tgk,t+vω,k+2µ4

∑
lhω,l

∑
ω′bω′,khω′,l

−ηfω,k

(vω,k ≥ 0) . (39)

If vω,k<0, we also have the update rule by transpos-
ing vω,k to the right-hand side and multiplying both
sides of Eq. (37) by ηfω,k + dω,k:

dω,k←
(ηfω,k + dω,k)

(∑
tyω,tgk,tr

−1
ω,t − vω,k

)∑
tgk,t+2µ4

∑
lhω,l

∑
ω′bω′,khω′,l

−ηfω,k

(vω,k < 0) . (40)

Similarly to Eqs. (39) and (40), the update rules of
the other variables are obtained as follows:

hω,l←
hω,l

∑
tyω,tul,tr

−1
ω,t∑

tul,t+2µ2

∑
kfω,k

∑
ω′fω′,khω′,l+wω,l+sω,l

(wω,k ≥ 0) , (41)

hω,l←
hω,l

(∑
tyω,tul,tr

−1
ω,t − wω,l

)∑
tul,t+2µ2

∑
kfω,k

∑
ω′fω′,khω′,l+sω,l

(wω,k < 0) , (42)

gk,t←
gk,t

∑
ωbω,kyω,tr

−1
ω,t∑

ω bω,k
, (43)

ul,t←
ul,t

∑
ωhω,lyω,tr

−1
ω,t∑

ω hω,l
, (44)

where wω,l and sω,l are given by

wω,l = 2µ3

∑
kdω,k

∑
ω′dω′,khω′,l, (45)

sω,l = 2µ4

∑
kbω,k

∑
ω′bω′,khω′,l. (46)

4 Evaluation experiment

4.1 Experimental conditions

To confirm the effectiveness of the proposed al-
gorithm, we compared the conventional method
(CSNMF) and new NMF with Eqs. (39)-(44), ap-
plying them to the separation task for monaural
multiple instrumental sources. In this experiment,
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Table 1 Evaluation scores of conventional and proposed methods

Target Other Conventional method Proposed method
sound sound SDR SIR SAR SDR SIR SAR
Piano Clarinet 2.4 8.4 4.3 8.4 14.8 9.6
Piano Trombone 3.1 15.8 3.5 11.0 24.4 11.2

Clarinet Flute 0.1 1.8 7.3 0.7 2.6 7.2
Clarinet Trombone 3.2 14.6 3.7 9.6 23.9 9.8
Flute Piano 5.8 12.8 7.0 7.0 14.9 7.9

Trombone Clarinet 2.1 12.4 2.8 4.7 19.3 4.9

we four types of real instruments, namely, piano,
clarinet, flute, and trombone, as the target sound.
These sound sources were separately recorded, and
the observed signals Y were produced by mixing two
sources selected from four sources with the input
SNR of 0 dB. In addition, we used artificial MIDI
sounds of the target instruments as supervision for
a priori training. The training sounds contain two
octave notes that cover all notes of the target signal
in the observed signal. The sampling frequency of all
signals was 44.1 kHz. The spectrograms were com-
puted using a 92-ms long rectangle window with a
46-ms overlap shift. The number of iterations for the
training was 500 and for separation was 400. More-
over, the number of a priori bases was 100, and the
number of bases for the matrixH was 30. In this ex-
periment, the wighting parameters were empirically
determined.
We used the signal-to-distortion ratio (SDR),

source-to-interference ratio (SIR), and sources-to-
artifacts ratio (SAR) defined in Ref. [5] as the evalu-
ation scores. SDR indicates the quality of separated
target sound. SIR indicates the degree of separation
between target and other sounds. SAR indicates ab-
sence of artificial distortion such as musical noise.

4.2 Experimental results

Table 1 shows the evaluated scores that are the
maximum of SDR within 10 trials. Also, Fig. 1
shows an example of the separation result obtained
by the conventional and proposed algorithms. As
noted in Table 1, the separation performance is in-
creased in the proposed method. The resultant
scores with respect to the mixture of clarinet and
flute is slightly lower than those of other mixtures
because both of the spectral patterns are relatively
similar. Figure 1 shows that the target piano sound
of the proposed method can be more enhanced than
that of conventional CSNMF because the trained
bases are fitted by the deformable ability in the pro-
posed method.

5 Conclusions

In this paper, we propose a new advanced super-
vised NMF that includes the deformable term for
the trained spectral bases and constraints for mak-
ing the bases to fit into the target sound. From
the experimental results, it can be confirmed that
the proposed method increases the separation per-
formance for the real instruments compared with the
conventional method.

(a) (b)

(c) (d)

Fig. 1 Spectrograms of (a) observed signal consist-
ing of piano and trombone, (b) oracle signal of the
target piano signal, (c) extracted piano signal by
conventional method, and (d) extracted piano sig-
nal by proposed method.
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