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1 Introduction
In recent years, music signal separation has been a

very active area of signal-processing research. This tech-
nique is suitable for many potential applications, e.g.,
controlling each source in a music signal in interactive
3D audio systems and realizing automatic music tran-
scription for each instrument player.

Common methods used for audio signal separation,
which were mainly developed for speech enhancement,
are nonlinear filtering algorithms such as Wiener filter-
ing (WF) [1] and the minimum mean-square error short-
time spectral amplitude (MMSE-STSA) estimator [2].
In particular, the MMSE-STSA estimator and its ex-
tended algorithms are optimal Bayesian estimators based
on the a priori speech statistical model, resulting in a
great improvement of sound quality. However, these
methods cannot be effectively applied to music signals
because it is difficult to deal with nonstationary interfer-
ence signals. Also, the performance has strong depen-
dence on the selection of the a priori statistical model,
which cannot be determined automatically.

As another means of signal separation, nonnegative
matrix factorization (NMF) has been actively studied [3],
in which an input spectrogram is decomposed into the
product of a spectral basis matrix and its activation ma-
trix. In particular, supervised NMF (SNMF) [4],which
includes a priori training with some sample sounds of a
target instrument, can extract the target signal to some
extent. Although SNMF can deal with nonstationary
source signals, it has an inherent drawback that the de-
composition includes approximation only valid for linear
combinations of spectrograms, and is not strictly valid
for time- (or time-frequency-) domain complex-valued
mixtures. In addition, it is difficult to implement the sta-
tistical model for time sequences.

Motivated by the complementarity between the prop-
erties of the MMSE-STSA estimator and SNMF, in this
paper, we propose a new approach based on the gener-
alized Bayesian estimator with automatic prior estima-
tion suitable for music signal separation. This method
consists of three parts, namely, the generalized MMSE-
STSA estimator [5] with a flexible target signal prior, the
SNMF-based interference spectrogram estimator, and a
new closed-form parameter estimation for the statisti-
cal model of the target signal time sequence based on
higher-order statistics.

Compared with the conventional methods, the pro-
posed method has the following advantages: (I) The tar-
get signal extraction is carried out via the generalized
MMSE-STSA estimator so that the mixing of the time-
frequency-domain complex-valued signals can be prop-
erly considered without any approximation. (II) Thanks
to the SNMF-based spectrogram estimator, we can dy-
namically estimate the nonstationary power spectra of
the interference signal. (III) The statistical model of the
hidden target signal can be detected automatically only
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Fig. 1 Block diagram of proposed method.

using the observable data, and can be used for optimal
Bayesian estimation with online target-signal prior adap-
tation.

2 Conventional method
2.1 Generalized MMSE-STSA estimator [5]

We apply short-time Fourier analysis to the observed
signal, which is a mixture of target and interference
signals, to obtain the time-frequency-domain complex-
valued signal

YR( f , τ)+iYI( f , τ)= (S R ( f , τ)+iS I ( f , τ))+(NR ( f , τ)+iNI ( f , τ)),
(1)

where Y∗( f , τ) is the observed signal, S ∗( f , τ) is the
target signal, N∗( f , τ) is the interference signal, and
∗={R, I} denote the real and imaginary parts of the sig-
nal, respectively. Also, f is the frequency bin and τ is
the frame index. The MMSE-STSA estimator provides
the amplitude spectrum of the target signal based on the
MMSE criterion under the assumption that the amplitude
spectrum of the target signal obeys a Rayleigh distribu-
tion. The generalized MMSE-STSA estimator [5] pro-
vides the amplitude spectrum of the target signal under
the assumption of a chi distribution.

2.2 SNMF [4]
The mixture model of NMF approximately assumes

the additivity of amplitude (or power) spectrograms as√
Y2

R( f , τ)+Y2
I ( f , τ) ≈

√
S 2

R( f , τ)+S 2
I ( f , τ)+

√
N2

R( f , τ)+N2
I ( f , τ) .

(2)

SNMF [4]consists of two processes, namely, training of
the target sound and separation of the observed signal. In
the training process, the supervised bases are trained as a
dictionary of the target sound. Then, the observed spec-
trogram is decomposed into the target and other spectro-
grams using the supervised bases in the separation pro-
cess.

3 Proposed method
3.1 Generalized MMSE-STSA estimator

Figure 1 depicts a block diagram of the proposed
method. In the next part, we describe these processes
in detail.
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In the generalized MMSE-STSA estimator, the am-
plitude spectrum of the target signal is estimated on the
basis of the MMSE criterion under a certain target prior.
The processed signal S̃ ( f , τ) via the generalized MMSE-
STSA estimator is given by

S̃ ∗( f , τ) = G( f , τ)Y∗( f , τ), (3)

G( f , τ) =

√
ν( f , τ)
γ( f , τ)

· Γ(ρ+0.5)
Γ(ρ)

· Φ(0.5−ρ, 1,−ν( f , τ))
Φ(1−ρ, 1,−ν( f , τ))

,

(4)

where Γ(·) is the gamma function, Φ(a, b; k)=F1(a, b; k)
is the confluent hypergeometric function, and

ν( f , τ)= γ̃( f , τ)ξ̃( f , τ)
(
1 + ξ̃( f , τ)

)−1
. (5)

Here, ξ̃( f , τ) and γ̃( f , τ) are the estimated a priori and a
posteriori SNRs, respectively, which are defined as

ξ̃( f , τ) = αγ̃( f , τ − 1)G2( f , τ) + (1 − α)max[γ( f , τ) − 1, 0],
(6)

γ̃( f , τ) =(Y2
R + Y2

I )/PÑ( f ), (7)

where PÑ( f ) is the estimated interference power spectral
density and α is the forgetting factor.

In the generalized MMSE-STSA estimator, the a pri-
ori statistical model of the target signal amplitude spec-
trum is set to

p(x) =
2
Γ(ρ)

(
ρ

E[x2]

)ρ
x2ρ−1exp

(
ρ

E [x2]
x2

)
, (8)

where p(x) is the p.d.f. of signal x in the amplitude do-
main and ρ is the shape parameter. Here, ρ = 1 gives
a Rayleigh distribution that corresponds to a Gaussian
distribution in the time domain, and a smaller value of ρ
corresponds to a super-Gaussian distribution signal.

In the generalized MMSE-STSA estimator, to calcu-
late γ̃( f , τ), dynamic estimation is required if the in-
terference signal is nonstationary, and estimation of the
shape parameter ρ, which depends on the type of tar-
get signal, is also required. To solve these problems, we
propose the use of SNMF as the interference signal esti-
mator and estimate the shape parameter ρ using higher-
order statistics of the target signal.

3.2 Interference signal estimation by SNMF
The following equation represents the decomposition

model of SNMF using the trained supervision compo-
nents F( f , k):

A( f , τ) =
√

Y2
R( f , τ) + Y2

I ( f , τ)

≈∑kF( f , k)V(k, τ) +
∑

nH( f , n)U(n, τ), (9)

where F( f , k) is a nonnegative element of the super-
vised basis matrix trained in advance, which involves
spectral patterns of the target signal as column vectors,
V( f , k) is a nonnegative element of an activation matrix
that corresponds to F( f , k), H( f , n) represents a non-
negative element of the other basis matrix, which in-
volves residual spectral patterns that cannot be expressed
by

∑
k F( f , k)V(k, τ), and U(n, τ) is a nonnegative ele-

ment of the activation matrix that corresponds to H( f , n).
Moreover, k is the basis index of F( f , k), and n is the ba-
sis index of H( f , n). The supervised basis matrix can be
trained using sample sounds of the target signal in the

training process. Hence, ideally,
∑

k F( f , k)V(k, τ) repre-
sents the target signal components and

∑
n H( f , n)U(n, τ)

represents the other components different from the target
signals after the decomposition.

We can use
∑

n H( f , n)U(n, τ) (or A( f , τ) −∑
k F( f , k)V(k, τ)) as the estimated amplitude spec-

trogram of the interference signal for the generalized
MMSE-STSA estimator. Thus, (

∑
n H( f , n)U(n, τ))2

is regarded as a good estimate of PÑ( f ) in (7) in the
time-frequency grids even if the interference sounds are
nonstationary, which is common in actual music signals.

3.3 Target signal prior estimation
3.3.1 Shape parameter and kurtosis

Generally, we cannot obtain any a priori statistical
model (8) from the training data (e.g., several octave
notes of the target instrument) in SNMF because the sta-
tistical time structure is quite different from that of the
target signal S ∗( f , τ). Also, the target signal component∑

k F( f , k)V(k, τ) in SNMF cannot be used because its
accuracy is not sometimes enough. Therefore, we in-
versely calculate the parameter of the target amplitude
spectrogram in a data-driven manner, utilizing two ob-
servable statistics of the input signal and interference
spectrogram estimated by SNMF.

Regarding the chi distribution p(x) in (8), the shape
parameter ρ can be written as follows:

ρ = (µ4/µ
2
2 − 1)−1, (10)

where µ4/µ
2
2 is called the kurtosis and µm is the mth-

order moment of the amplitude spectrum. µm is defined
as

µm =

∫ ∞

0
xm p(x)dx. (11)

From this relation, the shape parameter of the subjective
target signal can be estimated by obtaining its kurtosis
value. In general, however, it is difficult to directly esti-
mate the kurtosis of such a hidden target signal because
of the contamination by additive interference signals. In
the following subsections, a new algorithm of target kur-
tosis estimation is proposed for estimating of the shape
parameter of the target p.d.f.

To cope with the mathematical problem that the mix-
ing of the target and interference signals is additive but
generally their higher-order moments are not additive,
we introduce the cumulant, which holds the additivity for
additive variables. Meanwhile, in transformation from
a waveform to its amplitude spectrum, the exponentia-
tion operation is conducted but the cumulant does not
have a straightforward relationship. In this case, we use
the moment instead of the cumulant. Thus, we propose
moment-cumulant transformation.
3.3.2 Moment-cumulant transformation

In this section, we derive some formulas regarding
moment-cumulant transformation. They explicitly rep-
resent the relations between the moment and cumulant
in each order, which are useful for estimating the kurto-
sis of the target amplitude spectrum.

First, the characteristic function ϕx(it) of the random
variable x is defined as

ϕx(it) =
∫ ∞

−∞
eitxP(x)dx. (12)

Then, we can define the mth-order moment µm(x) and
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the mth-order cumulant κm(x) of x as follows:

µm(x) =
∂(m)ϕx(it)
∂it(m)

∣∣∣∣∣∣
t=0
, (13)

κm(x) =
∂(m) log ϕx(it)
∂it(m)

∣∣∣∣∣∣
t=0
. (14)

Next, polynomial forms of interrelations between the
moment and cumulant are derived below. From (13), the
mth-order moment µm(x) can be rewritten as

µm(x) =
∂(m) exp(log ϕx(it))

∂it(m)

∣∣∣∣∣∣
t=0

=
∑
π(m)

∏
B∈π(m)κ|B|(x), (15)

where we use a combinational form of Faà di Bruno’s
formula,

∂(m) f (g(x))
∂x(m) =

∑
π(m) f (|π(m)|)(g(x))

∏
B∈π(m)[g(x))](|B|), (16)

where π(m) runs through the list of all partitions of a set
of size m, B ∈ π(m) means that B is one of the blocks
into which the set is partitioned, and |B| is the size of the
set B.

In the same manner, from (14), the mth-order cumu-
lant κm(x) is given by

κm(x) =
∑
π(m) log(|π(m)|)(ϕx(it))

∏
B∈π(m)[ϕx(it))](|B|)∣∣∣

t=0

=
∑
π(m)(−1)|π(m)|−1(|π(m)| − 1)!

∏
B∈π(m)µ|B|(x).

(17)

3.3.3 Estimation of target signal kurtosis from ob-
servations

In this section, we estimate the amplitude-domain kur-
tosis of the target signal. First, we express the target
kurtosis by using complex-valued variables as intrinsic
parameters. After that, we show that the kurtosis can be
represented in the amplitude-spectrogram domain. Here-
after, we ignore the indexes f , τ, k, and n of each signal.
Only the statistics of (YR+ iYI) and (N2

R+N2
I )1/2 obtained

by SNMF are observable, and (S 2
R + S 2

I )1/2 is a hidden
value to be estimated. First, we assume to obtain the
following mth-order moments from the data:

µm(YR) = E[Ym
R ], (18)

µm(YI) = E[Ym
I ], (19)

µm(NR) = E[Nm
R ], (20)

µm(NI) = E[Nm
I ]. (21)

Generally, the cumulant has the property of additivity for
additive independent variables, i.e., κm(a + b) = κm(a) +
κm(b). Using this relation and (17), we can estimate the
cumulant of the real part of the target signal S R=YR−NR
as
κm(S R) = κm(YR) − κm(NR)

=
∑
π(m)(−1)|π(m)|−1(|π(m)| − 1)!

∏
B∈π(m)µ|B|(YR)

−∑
π(m)(−1)|π(m)|−1(|π(m)| − 1)!

∏
B∈π(m)µ|B|(NR).

(22)

The statistics of the squared variable of S R is given by

µm(S 2
R) = µ2m(S R) =

∑
π(2m)

∏
B∈π(2m)κ|B|(S R). (23)

In the same manner, we can estimate the statistics of the
squared variable of S I. Given µm(S 2

R) and µm(S 2
I ), we

can calculate the cumulant of the power spectrum S 2
R+S 2

I
as
κm(S 2

R + S 2
I )

= κm(S 2
R) + κm(S 2

I )

=
∑
π(m)(−1)|π(m)|−1(|π(m)| − 1)!

∏
B∈π(m)µ|B|(S

2
R)

+
∑
π(m)(−1)|π(m)|−1(|π(m)| − 1)!

∏
B∈π(m)µ|B|(S

2
I ),

(24)

and the mth-order moment of the power spectrum is
given by

µm(S 2
R + S 2

I ) =
∑
π(m)

∏
B∈π(m)κ|B|(S

2
R + S 2

I ). (25)

Furthermore, the mth-order moment of the amplitude
spectrum (S 2

R + S 2
I )1/2 is

µm((S 2
R + S 2

I )
1
2 ) = µ m

2
(S 2

R + S 2
I ). (26)

Using (18)–(26), we can estimate the resultant kurtosis
of the target amplitude spectrum as

kurttarget =
µ4((S 2

R + S 2
I )

1
2 )

µ2
2((S 2

R + S 2
I )

1
2 )

=
N (µm(YR), µm(YI), µm(NR), µm(NI))
D (µm(YR), µm(YI), µm(NR), µm(NI))

, (27)

where

N (µm(YR), µm(YI), µm(NR), µm(NI))
= µ4(YR) + µ4(YI) − µ4(NR) − µ4(NI)

+ 6µ2
2(NR) + 6µ2

2(NI) + 2µ2(YR)µ2(YI) + 2µ2(NR)µ2(NI)
− 6µ2(YR)µ2(NR) − 6µ2(YI)µ2(NI)
− 2µ2(YR)µ2(NI) − 2µ2(YI)µ2(NR), (28)

D (µm(YR), µm(YI), µm(NR), µm(NI))

= µ2
2(YR) + µ2

2(YI) + µ2
2(NR) + µ2

2(NI) + 2µ2(YR)µ2(YI)
− 2µ2(YR)µ2(NR) − 2µ2(YR)µ2(NI) − 2µ2(YI)µ2(NR)
− 2µ2(YI)µ2(NI) + 2µ2(NR)µ2(NI). (29)

Next, the sums of the 4th-order moments µ4(YR) +
µ4(YI) and µ4(NR) + µ4(NI) are represented by the
amplitude-domain kurtosis of the observed signal spec-
trum and the interference signal spectrum as

µ4(YR) + µ4(YI) =
(
µ2

2(YR) + µ2
2(YI) + 2µ2(YR)µ2(YI)

) µ4(A)
µ2

2(A)
−2µ2(YR)µ2(YI), (30)

µ4(NR) + µ4(NI) =
(
µ2

2(NR) + µ2
2(NI) + 2µ2(NR)µ2(NI)

) µ4
(∑

nHU
)

µ2
2
(∑

nHU
)

−2µ2(NR)µ2(NI). (31)

If we assume that the real and imaginary parts are i.i.d.,
µ2(YR) equals µ2(YI) and µ2(NR) equals µ2(NI). Under
this assumption and (15) and (17), we obtain the follow-
ing relation for the SNMF output:

µ2(YR) = µ2(YI) =
1
2
µ2(A), (32)

µ2(NR) = µ2(NI) =
1
2
µ2(

∑
nHU). (33)
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Fig. 2 Average SDRs for extraction of (a) clarinet signal, (b) oboe signal, and (c) cello signal for each method.
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Fig. 3 Scores of each part.

Finally, using (30)–(33), (27) is rewritten as follows:

kurttarget =
µ4(A)−µ4(∑n HU)+4µ2

2(
∑

n HU)−4µ2(A)µ2(
∑

n HU)
µ2

2(A)+µ2
2(

∑
n HU)−2µ2(A)µ2(

∑
n HU) .

(34)

The shape parameter of the target p.d.f. can be esti-
mated using (10) and (34). Note that all the estimates
can be obtained from the result of SNMF without using
any waveforms; this implies a good applicability to the
combination with SNMF.

4 Experiments
4.1 Experimental conditions

In this experiment, we compared four methods, i.e.,
simple SNMF [4], WF with SNMF-based interference
estimation (WF+SNMF) [6], the MMSE-STSA estima-
tor with SNMF-based interference estimation (MMSE-
STSA+SNMF), and the proposed method. WF and the
MMSE-STSA estimator utilized the interference spec-
trogram estimated by SNMF. We used three instrumen-
tal signals, namely, an oboe, clarinet, and cello, as the
target sounds (each melody part is depicted in Fig. 3).
These signals were artificially generated by a MIDI syn-
thesizer, and the observed signals were produced by mix-
ing two sources selected from three signals with the same
power. In estimation of the interference signal using
SNMF, we used the same MIDI sounds of the target in-
struments as supervision for the training process. The
training sounds contained two octave notes that cover all
the notes of the target signal in the observed signal. The
spectrograms were computed using a 92-ms-long rect-
angular window with a 46-ms overlap shift. Moreover,
the number of trained bases was 100 and the number of
other bases was 50. In the proposed method, the for-
getting factor α and amplitude compression parameter β
were set to 0.1 and 1.0, respectively.

4.2 Experimental results and discussion
We used the signal-to-distortion ratio (SDR) defined

in [7] as the evaluation score. SDR indicates the over-
all quality of the separated target sound, showing high
separation and less artificial distortion.

Figure 2 shows the average SDRs for each method and
each target instrument. From the SDR results, we can
confirm that the separation performance of the proposed

method is better than those of the other methods. This
result indicates the efficacy of introducing the flexible a
priori statistical model of the target signal. The simple
MMSE-STSA estimator also assumes the fixed a priori
model of the Gaussian distribution but the assumption is
not appropriate for a music target signal. In contrast, the
proposed method almost always uses more spiky p.d.f.
(ρ < 1), which enhances the true sparseness of the target
music signal.

5 Conclusions
In this paper, we propose a new approach for ad-

dressing music signal separation based on the gener-
alized Bayesian estimator with automatic prior adapta-
tion. From the experimental evaluation, it is found that
the proposed method outperforms competitive methods,
namely, simple NMF, WF, and the MMSE-STSA esti-
mator with a fixed Gaussian prior.
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