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ABSTRACT

This document summarizes an algorithm for independent low-rank matrix analysis, which was proposed as determined rank-1 mul-
tichannel nonnegative matrix factorization in the following published papers:
Daichi Kitamura, Nobutaka Ono, Hiroshi Sawada, Hirokazu Kameoka, and Hiroshi Saruwatari, “Efficient multichannel nonnegative
matrix factorization exploiting rank-1 spatial model,” Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2015), pp. 276–280, April 2015.
Daichi Kitamura, Nobutaka Ono, Hiroshi Sawada, Hirokazu Kameoka, and Hiroshi Saruwatari, “Determined blind source separation
unifying independent vector analysis and nonnegative matrix factorization,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 24, no. 9, pp. 1626–1641, September, 2016 (open access).
Two detailed algorithms for implementation and some empirical knowledges for the use of them are described in this document.

1 Introduction

Nonnegative matrix factorization (NMF) [1]–[5] is a low-rank approximation (dimensionality reduction) with nonnegative
constraint, and many applications using NMF has been proposed, e.g., audio signal processing, text mining, image recognition,
and bioinformatics. In particular, audio source separation is one of the most popular and successive research area of NMF [6]–
[8]. For audio signals, NMF extracts some specific spectral patterns (bases) and their time-varying gains (activations) in the
observed signal. The source separation using NMF is achieved by clustering such decomposed nonnegative parts into each
source, and this clustering may require some prior knowledge about the sources in the mixture (e.g., semi- and full-supervised
NMF methods [9, 10]).

As a blind source separation technique, multichannel NMF (MNMF) was proposed [11, 12], which simultaneously esti-
mates the NMF variables (source model) and a spatial mixing matrix. The estimated bases and activations are attributed to
sourcewise spatial features. These methods are generalized by Sawada et al. [13] exploiting more flexible spatial model called
full-rank spatial covariance [14]. In this method, similarly to the original MNMF, the estimated source model is clustered
based on the estimated spatial model to achieve the separation. However, it is reported that these algorithms are sensitive to
the initial values of variables, and the computational cost is larger than those of conventional blind source separation methods.

For a determined or overdetermined blind source separation, independent component analysis (ICA) [15] and its extension
to the frequency domain (frequency-domain ICA: FDICA) [16]–[20] are popular and traditional techniques. These ICA-
based methods estimate a demixing matrix (an inverse matrix of the mixing matrix) in the frequency domain. In particular,
independent vector analysis (IVA) [21]–[23] achieves better and stable source separation performance compared with FDICA,
and an auxiliary-function-based efficient update rules for IVA were developed [24].

In [25, 26], a new algorithm for blind source separation was proposed, which is called determined rank-1 MNMF. De-
termined rank-1 MNMF has the same model as the conventional MNMF [11], but the demixing matrix is estimated instead
of the mixing matrix. This approach is similar to the traditional ICA-based blind source separation, and it is revealed that
determined rank-1 MNMF is a natural extension of IVA in terms of the flexibility of the source model (although the assumed
prior distributions in IVA and determined rank-1 MNMF are different). Namely, the vector source model in IVA is extended
to the low-rank matrix source model using NMF decomposition in determined rank-1 MNMF. To clarify this issue, in this
document, we have renamed determined rank-1 MNMF as independent low-rank matrix analysis (ILRMA). The cost function
in ILRMA consists of those in IVA and simple NMF based on Itakura–Saito divergence. Therefore, all the variables including
demixing matrix and NMF variables can efficiently be optimized by an iterative projection proposed in [24] and auxiliary-
function-based multiplicative update rules [4]. However, since these update rules derived in the paper [26] are described in
scalar notations, it is difficult to implement ILRMA in an efficient way using matrix operations. In this document, the efficient
algorithms for ILRMA using matrix notations are described in Sects. 2.2 and 2.3.
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2 Algorithms for ILRMA
There are two models in ILRMA: ILRMA without partitioning function (hereafter referred to as ILRMA1) and ILRMA with
partitioning function (hereafter referred to as ILRMA2), where the partitioning function is used for determining the optimal
number of NMF bases for each source. Therefore, in ILRMA1, we must set the fixed number of bases for each source.
In ILRMA2, we only set the total number of bases, and the algorithm adaptively estimates the partition of all the bases by
optimizing the partitioning function. The detailed formulations of them can be found in [26].

2.1 Definitions
In this subsection, some definitions of variables are described as preliminaries. Note that the lowercase Italic characters
denote scalars, lowercase bold Italic characters denote column vectors, uppercase bold Italic characters denote matrices, and
uppercase Sans-serif characters denote the third-order tensors. Also, T and H denote simple transpose and Hermitian transpose
of vectors or matrices, respectively.

• M: number of channels (microphones) whose index is m

• N: number of sources whose index is n, where we assume M = N (overdetermined situation) in this document

• I: number of frequency bins whose index is i

• J: number of time frames whose index is j

• L: number of bases for each source whose index is l

• K: total number of bases for all the sources whose index is k

• xi j = (xi j,1 xi j,2 · · · xi j,M)T: complex-valued observed (mixture) signals in time-frequency domain

• X: complex-valued I × J × M tensor whose element is xi j,m

• yi j = (yi j,1 yi j,2 · · · yi j,N)T: complex-valued estimated (separated) signals in time-frequency domain

• Y: complex-valued I × J × N tensor whose element is yi j,n

• Wi = (wi,1 wi,2 · · · wi,N)H: complex-valued N×M demixing matrix for the ith frequency bin, which leads yi j =Wixi j

• wi,n: complex-valued M × 1 vector in Wi called demixing filter for the nth source, where yi j,n = wH
i,nxi j

• en: N × 1 vector with only the nth element equal to unity and the other elements equal to zeros

• P: nonnegative I × J × N tensor that corresponds to the power spectrograms of estimated source signals

• pi j,n: nonnegative element of P

• R: nonnegative I × J × N tensor that corresponds to the model spectrograms (time-frequency variances) for all sources
(low-rank approximation of P using NMF decomposition)

• Tn: nonnegative I × L basis matrix for the nth source, which is used in ILRMA1

• Vn: nonnegative L × J activation matrix for the nth source, which is used in ILRMA1

• til,n: nonnegative element of Tn.

• vl j,n: nonnegative element of Vn.

• T : nonnegative I × K basis matrix for all sources, which is used in ILRMA2

• V : nonnegative K × J activation matrix for all source, which is used in ILRMA2

• tik: nonnegative element of T

• vk j: nonnegative element of V

• Z = (z1, z2, · · · , zN)T: N × K matrix called partitioning function used in ILRMA2, where all the elements are in the
range [0, 1]
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• zn: K × 1 vector in Z

• znk: element of Z, where
∑

n znk = 1

• 1(size): matrix of ones whose size is denoted as the superscript, e.g., 1(I×J)

• ε: machine epsilon

• ŷi j,n: complex-valued and scale-fitted M × 1 vector, which corresponds to the estimated nth source (spatial) image

Note that the third-order tensor with a subscript denotes the sliced matrix or the fiber vector in the original tensor [27]. For
example, since X is an I × J × M tensor, Xi:: denotes the J × M sliced matrix in X, X: j: denotes the I × M sliced matrix
in X, and X::m denotes the I × J sliced matrix in X. Also, Xi j:, Xi:m, and X: jm denote the M × 1, J × 1, and I × 1 fiber
(column) vectors, respectively. In the algorithm description, ◦ and the quotient symbol for matrices denote the elementwise
multiplication and division, respectively. In addition, the absolute value | · | and the dotted exponent for matrices (e.g., X .2)
denote the elementwise absolute value and the elementwise exponent, respectively. For example, P::n = |Y::n|.2. Moreover, the
maximum operator max(·, ·) returns a matrix with the larger elements taken from two inputs in each entry.

2.2 Algorithm for ILRMA1
Since ILRMA1 does not utilize the partitioning function Z, the optimization is simply carried out by an alternative iteration
of iterative-projection-based IVA update rule [24] and simple NMF update rules [3, 4]. Algorithm 1 shows a detailed process
flow in ILRMA1. For the implementation, we have to note the corresponding scalars, vectors, and matrices variables. For
example, when we update wi,n at the lines 13 and 14 in Algorithm 1, the nth row in Wi must be replaced to the new wH

i,n
before it is used in the line 17.

2.3 Algorithm for ILRMA2
In ILRMA2, we only set the total number of bases. The K bases are shared (distributed) to each source by the partitioning
function Z. The optimization of Z is also carried out by an NMF-like multiplicative update rule. Algorithm 2 shows a detailed
process flow in ILRMA2.

2.4 Post process of ILRMA
The ICA-based source separation methods cannot determine scales of the estimated sources. Therefore, after the separation,
a back-projection technique [28, 29] must be applied to the estimated signal yi j. This technique ideally restores the scales
of the estimated sources to their observed amplitudes in xi j, where the inverse matrix of the demixing matrix is utilized for
the restoration. Algorithm 3 shows the detailed process flow of the back-projection technique. The output signal ŷi j,n is a
scale-fitted estimated signal of the nth source, where ŷi j,n is a multichannel estimated signal of the nth source (M × 1 vector),
which is often called the source image.

3 Empirical knowledges
In this section, we describe some empirical knowledges about the implementation and use of ILRMA.

• When the input multichannel signal xi j is overdetermined (M > N), principal component analysis should be applied in
advance for reducing its dimension so that M = N.

• When the input signal xi j includes zeros, the zero division might occur in NMF update rules. The zeros in xi j should
be replaced with the machine epsilons. Also, we must avoid to put zeros as the initial values of Tn, Vn, T , V , and Z
because the multiplicative update rules do not work for the zero elements.

• For the initial values of Wi, the identity matrix is preferable.

• When the number of time frames J is small, namely, the observed signal is too short, the matrix WiUi,n at the lines 13
in Algorithm 1 and 25 in Algorithm 2 tends to be a singular matrix, and its inversion cannot be calculated. In such a
case, pseudo-inverse should be used, but the computational cost greatly increases in many languages (e.g., Matlab). We
can also avoid the inversion error by adding small values to the diagonal elements in the singular matrix.

• As a normalization coefficient, we described the root mean powers of estimated sources at the lines 20 in Algorithm 1
and 33 in Algorithm 2. However, any kind of coefficients can be used here. This normalization is processed to avoid a
divergence of variables Wi or R to infinity. If the computational cost should be reduced, these normalization processes
can be omitted although the algorithms become unstable in some cases.
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Algorithm 1: ILRMA1
input : observed multichannel complex-valued signals xi j

output: estimated complex-valued sources yi j

1 Initialize Wi with identity matrix or complex-valued random values and Tn and Vn with nonnegative random values;
2 Calculate yi j =Wixi j for all i and j; // Initial estimated sources

3 Calculate P::n = |Y::n|.2 for all n; // Initial power spectrograms of estimated sources

4 Calculate R::n = TnVn for all n; // Initial model spectrograms

5 repeat
6 for n = 1 to N do

7 Tn ← max
Tn ◦

[
(P::n◦R.−2

::n )V T
n

R.−1
::n V T

n

]. 12
, ε

; // Update of basis matrix

8 R::n = TnVn; // New model spectrograms

9 Vn ← max
Vn ◦

[
T T

n (P::n◦R.−2
::n )

T T
n R.−1

::n

]. 12
, ε

; // Update of activation matrix

10 R::n = TnVn; // New model spectrograms

11 for i = 1 to I do
12 Ui,n =

1
J

{
XH

i::

[
Xi:: ◦

(
R.−1

i:n 1
(1×M)
)]}T

; // Xi:: is J × M matrix, Ri:n is J × 1 vector, Ui,n is M × M matrix

13 wi,n ← (WiUi,n)−1en; // Update of demixing filter

14 wi,n ← wi,n(wH
i,nUi,nwi,n)−

1
2 ; // Normalization of demixing filter

15 end
16 end
17 Calculate yi j =Wixi j for all i and j; // New estimated sources

18 Calculate P::n = |Y::n|.2 for all n; // New power spectrograms of estimated sources

19 for n = 1 to N do

20 λn =

√
1
IJ

∑
i, j pi j,n; // Normalization coefficient

21 for i = 1 to I do
22 wi,n ← wi,nλ

−1
n ; // Normalization of demixing filter

23 end
24 P::n ← P::nλ

−2
n ; // Normalization of separated power spectrogram

25 R::n ← R::nλ
−2
n ; // Normalization of model spectrogram

26 Tn ← Tnλ
−2
n ; // Normalization of basis matrix

27 end
28 until converge;
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Algorithm 2: ILRMA2
input : observed multichannel complex-valued signals xi j

output: estimated complex-valued sources yi j

1 Initialize Wi with identity matrix or complex-valued random values, T and V with nonnegative random values, and Z with random
values in range [0, 1];

2 Z ← Z ◦
(
1(N×N)Z

).−1
; // Ensuring

∑
n znk = 1

3 Calculate yi j =Wixi j for all i and j; // Initial estimated sources

4 Calculate P::n = |Y::n|.2 for all n; // Initial power spectrograms of estimated sources

5 Calculate R::n =
[(
1(I×1)zT

n

)
◦ T
]
V for all n; // Initial model spectrograms

6 repeat
7 for n = 1 to N do

8 an =

( {[T T(P::n◦R.−2
::n )]◦V }1(J×1)

[(T TR.−1
::n )◦V ]1(J×1)

). 12
; // am is K × 1 vector

9 end
10 Z ← max (Z ◦A, ε), where A = (a1 · · · aN)T; // Update of partitioning function, A is N × K matrix

11 Z ← Z ◦
(
1(N×N)Z

).−1
; // Ensuring

∑
n znk = 1

12 Calculate R::n =
[(
1(I×1)zT

n

)
◦ T
]
V for all n; // New model spectrogram

13 for i = 1 to I do

14 bi =

( {[V (Pi::◦R.−2
i:: )]◦ZT}1(N×1)

[(V R.−1
i:: )◦ZT]1(N×1)

). 12
; // bi is K × 1 vector

15 end
16 T ← max (T ◦B, ε), where B = (b1 · · · bI)T; // Update of basis matrix, B is I × K matrix
17 Calculate R::n =

[(
1(I×1)zT

n

)
◦ T
]
V for all n; // New model spectrogram

18 for j = 1 to J do

19 c j =

 {[T T
(
P: j:◦R.−2

: j:

)]
◦ZT

}
1(N×1)[(

T TR.−1
: j:

)
◦ZT

]
1(N×1)

. 12 ; // c j is K × 1 vector

20 end
21 V ← max (V ◦C, ε), where C = (c1 · · · cJ); // Update of activation matrix, C is K × J matrix
22 Calculate R::n =

[(
1(I×1)zT

n

)
◦ T
]
V for all n; // New model spectrogram

23 for n = 1 to N do
24 for i = 1 to I do
25 Ui,n =

1
J

{
XH

i::

[
Xi:: ◦

(
R.−1

i:n 1
(1×M)
)]}T

; // Xi:: is J × M matrix, Ri:n is J × 1 vector, Ui,n is M × M matrix

26 wi,n ← (WiUi,n)−1en; // Update of demixing filter

27 wi,n ← wi,n(wH
i,nUi,nwi,n)−

1
2 ; // Normalization of demixing filter

28 end
29 end
30 Calculate yi j =Wixi j for all i and j; // New estimated sources

31 Calculate P::n = |Y::n|.2 for all n; // New power spectrograms of estimated sources

32 for n = 1 to N do

33 λn =

√
1
IJ

∑
i, j pi j,n; // Normalization coefficient

34 for i = 1 to I do
35 wi,n ← wi,nλ

−1
n ; // Normalization of demixing filter

36 end
37 P::n ← P::nλ

−2
n ; // Normalization of separated power spectrogram

38 R::n ← R::nλ
−2
n ; // Normalization of model spectrogram

39 end
40 Calculate tik ← tik

∑
n znkλ

−2
n for all i and k; // Normalization of basis matrix

41 Calculate znk ← znk
λ−2

n∑
n′ zn′kλ

−2
n′

for all n and k; // Normalization of partitioning function

42 until converge;
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Algorithm 3: Back-projection technique
input : estimated multichannel complex-valued sources yi j

output: scale-fitted estimated source images ŷi j,n

1 for i = 1 to I do
2 for j = 1 to J do
3 for n = 1 to N do
4 ŷi j,n =W −1

i

(
en ◦ yi j

)
; // M × 1 vector

5 end
6 end
7 end

• The separation result depends on the initial values. The error bars sometimes become large especially for the mixture of
speech signals (see the experimental results in the paper [26]). The dependence on initial values becomes strong when
the number of bases increases.

• Similarly to FDICA or IVA, ILRMA utilizes an assumption about the mixing system called the rank-1 spatial model
(assumption of instantaneous mixture in the frequency domain). On the basis of this assumption, the reverberation time
should be much shorter than the length of window function used in STFT. Also, the sources must spatially be stable
(not moving) and must be assumed as point sources.

4 Conclusion
This document summarizes the algorithms for ILRMA. There are two models in ILRMA depending on the presence of
partitioning function. I hope this document will help your happy source separation life.
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