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Abstract

In this dissertation, to address a music source separation problem, several
optimization algorithms are proposed. Music source separation is a technique to
extract or separate specific music sources from an observed mixture signal that
contains multiple music instrumental and vocal sounds. There are many feasible
applications for this technique, for example, audio remixing by users, automatic
music transcription, and musical instrument education. A general audio source
separation problem has been investigated for a long time, particularly in the
speech signal processing field to reduce background noise and enhance only the
speech signal in the observation. Many techniques have been proposed for
various recording conditions in the past, and they can roughly be divided into
two situations: determined (or overdetermined) and underdetermined cases. In
the determined situation, sufficient number of observations (microphones used
in the recording) can be utilized for solving the separation problem, whereas the
underdetermined situation, which includes monaural observation, basically
lacks such multi-dimensional information. Also, presence of external prior
information (supervision) such as music scores, source locations, or sound
examples of each source in the mixture is another important issue. The source
separation techniques without any prior information is often called blind source
separation, which is the most difficult but a practical technique.

The objective of this dissertation is to develop an effective optimization
algorithm for the music source separation and to achieve satisfactory separation
performance. Two main topics are here addressed: determined (and overde-
termined)　blind source separation and single-channel (underdetermined)
semi-supervised source separation. The semi-supervised source separation
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exploits sound examples of only the target source for the separation, namely,
only the target source is extracted from the mixture. In both the topics, an
important property of music signals is focused to effectively capture their
structures. Since typical music signals consist of limited number of components
such as discrete pitches and musical notes and include many reiteration of
similar or the same spectral patterns (timbers), the power spectrogram of music
signals tends to have a low-rank structure. On the basis of this nature in music
signals, for both the topics discussed in this dissertation, a popular algorithm
of matrix decomposition called nonnegative matrix factorization (NMF) is
exploited for modeling the structure of music signals. By applying NMF to the
spectrogram of audio signal, the frequently appearing spectral patterns and their
time-varying gains can be extracted as bases and activations. These components
are useful for modeling the audio signals and achieving the source separation.
For the problem of determined blind source separation, independent component
analysis (ICA) and its multivariate extension, independent vector analysis
(IVA), are traditional and reliable approaches and can provide good separation
results particularly for a mixture signal of speech. These approaches estimate
spatial demixing filters by assuming that the sources are mutually independent.
This assumption is valid in a practical mixture signal and make the separation
problem solvable in a fully blind fashion. However, the separation accuracy of
ICA and IVA for music signals is not satisfactory. This is because the general
music signals frequently contain spectral overlaps and co-occurrences between
sources, which result in a harmony of music, and these properties weaken the
inherent independence between the sources. Also, the both methods assume
only the non-Gaussian source distribution as an unspecific source model and do
not utilize any information about the structure in the spectrogram of each source.
To solve this problem, in this dissertation, the unified method of NMF and
IVA called independent low-rank matrix analysis (ILRMA) is proposed, which
performs simultaneous estimation of the spectrogram structure of each source
and their spatial demixing filters. The optimization algorithm in ILRMA ensures
faster convergence, more stable performance, and better computational efficiency
compared with conventional methods including multichannel extension of
NMF (MNMF), which is a state-of-the-art method for source separation. Also,
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theoretical relationships between IVA, MNMF, and ILRMA are revealed, namely,
ILRMA is essentially equivalent to MNMF with a constraint for the mixing
system, and IVA is also a special case of ILRMA.

For the single-channel semi-supervised source separation task, semi-
supervised NMF, which aims to extract only the target source from the
mixture, is the most popular approach. In this method, sound examples of the
target source are utilized for preparing the supervised bases (spectral dictionary)
of the target source. However, when the target source and the other sources
in the mixture signal share similar or the same spectral patterns (bases), the
separation performance of semi-supervised NMF is degraded because such
shared components cannot be separated. This fact means that the supervised
bases must be discriminative from the other bases of non-target sources. On the
basis of this fact, in this dissertation, a new training algorithm that provides
discriminative supervised bases is proposed for semi-supervised NMF. In
this method, other sound examples, which are candidates of the non-target
signals in the observed mixture, are utilized only for learning which spectral
components will be frequently shared between the target and non-target sources.
Furthermore, a new efficient initialization scheme for NMF is proposed. Since
an optimization in NMF requires initial values for bases and activations, all the
results of applications based on NMF always depend on the initialization. The
proposed initialization is based on a maximization of mutual independence
between the activations using nonnegative ICA algorithm. The efficacy of the
proposed method for several source separation tasks including ILRMA and
semi-supervised NMF with discriminative basis training is experimentally
confirmed.
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1
Introduction

1.1 Background

Audio source separation is a technique for separating specific source signals
from a mixture signal and has been intensively studied for several decades. This
technique mainly focuses on mixed signals of speech, which can be used for
many applications including speech enhancement, automatic speech recognition,
reduction of undesired background noise, and hearing aid systems. Many
applications assume the use of microphone array, which consists of several
synchronized microphones, for recording sound sources in a multichannel
format. In particular, when the number of microphones (channels) is equal to or
grater than the number of sources, which is called determined or overdetermined
situation, blind source separation (BSS) technique is often applied to solve the
audio source separation problem. The benefit of using BSS is accessibility for
many systems because BSS techniques do not require any information about
the recording environment, mixing system, or source locations. Audio source
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separation for underdetermined or single-channel signals is also a potential
feature because the variety of its applications is wider than the source separation
techniques using microphone array. Since there is no satisfactory information in
the observations, this problem is tougher than the determined problem, and
some assumptions or training data for sources in a mixture are required to solve
the separation effectively.

The audio source separation for music signals has also attracted considerable
interest in recent yeas. This is also used for many applications, for example,
remixing of existing music, automatic music transcription, music search and
recommendation systems, sound field reproduction of a live concert, and
education for musical instruments. When the music signal is recorded by
the microphone array (in a determined or an overdetermined situation), BSS
techniques can be applied similar to the speech source separation. However,
almost all existing music signals are mixed down and provided in a stereo
format even though it includes more than two sources. For such signals, the
underdetermined or single-channel source separation techniques must be
applied to achieve the source separation. As the advantage in music source
separation, some prior information of the instrumental sources are often available,
for example, a music score, solo-played instrumental signals, and synthetic or
sample-recorded sound dataset of specific musical instruments. For this reason,
supervised approach of music source separation has also been an active area of
research.

1.2 Prior Work

The source separation problem includes several situations depending on its
assumptions and conditions, e.g., the number of recoding channels, recording
environment, presence of prior information and training data, characteristics of
mixed sources (stability and temporal or harmonic structure), and availability
of other sensing data (multimodality). BSS for the determined observation
is one of the most basic theory in these problems. In particular, independent
component analysis (ICA) [1] has been well studied since the mid 1990s not only in
the filed of acoustic signal processing but also in fields of brain science, radio
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engineering, financial engineering, and image signal processing. Since a mixing
system of acoustic signals becomes a convolutive mixture due to effect of room
reverberation, and it is a more difficult problem than the instantaneous mixing
system, ICA has been developed mainly in the field of acoustic signal processing.
In the late 1990s, frequency-domain ICA (FDICA) [2] was established to deal with
such convolutive mixture using Fourier transform. By the advent of independent
vector analysis (IVA) [3, 4] in 2006, which is an extension of FDICA, a high-quality
blind speech separation was achieved.

On the other hand, a new theory of matrix decomposition called nonnegative
matrix factorization (NMF) [5] was invented in 1999. NMF can extract some
meaningful features in an observed data matrix as non-orthogonal basis vectors
and is applied to a spectrogram of an acoustic signal, which enables one to
extract specific spectral patterns of sources. On the basis of this theory, many
techniques for solving the underdetermined and single-channel audio source
separation have been proposed, and they have substantially been progressed
during the 2000s and 2010s. In particular, multichannel NMF (MNMF) [6],
which deals with the multichannel signal and simultaneously models the
spectral patterns and spatial information (differences between channels) of the
recording environment, results in a major contribution to the underdetermined
source separation problem. Also, a supervised approach based on NMF [7]
was introduced for the single-channel source separation, where training data
for the sources in mixture signal are directly exploited for preparing spectral
dictionaries of each source. In the very recent past, a method of discriminative
training for supervised NMF has actively been addressed [8, 9, 10] to improve
separation performance of supervised NMF. As another issue, the effective
initialization method for NMF has been investigated since NMF appeared,
particularly in the field of machine learning. Since an optimization algorithm in
NMF requires initial values for the variables and the result of decomposition
strongly depends on their initialization, the effective initialization is one of the
attractive research topics.
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1.3 Contributions

The objective of this dissertation is to develop an effective optimization
algorithm for the music source separation and to achieve satisfactory separation
performance. On the basis of the nature in music signals, such as low-rank
and discrete structure of the music spectrogram, NMF is suitably exploited for
modeling these structures throughout this dissertation. The following two major
problems in music source separation are mainly addressed here:

• Determined and overdetermined BSS

• Single-channel semi-supervised source separation

For the former issue, an effective unified method of NMF and IVA is proposed as
an extension of traditional ICA algorithms. In addition, intriguing relationships
between IVA, MNMF, and the proposed method are theoretically revealed.
For the latter research topic, a new optimization algorithm for discriminative
training of supervised bases is developed, which can be applied even in
semi-supervised situations. The algorithm approximately solves a conventional
bilevel optimization problem for obtaining discriminative bases. Furthermore,
an effective initialization scheme based on statistical independence of NMF
components is considered and applied to the two proposed methods described
above.

1.4 Outline

Chapter 2 presents some basic preliminaries of audio source separation,
which include mathematical formulation, overview of conventional techniques,
motivations for developing new algorithms, and principle of NMF. In Chap. 3,
I propose a new effective algorithm for determined BSS task and discuss
the relationship between conventional and the proposed methods. Also, the
extended algorithm for overdetermined and reverberant signals is proposed. The
efficacies of these methods are validated via experiments. Chapter 4 deals with a
single-channel semi-supervised source separation problem. After explaining the



1.4 Outline 5

conventional approaches for training discriminative features in full-supervised
situation, a new discriminative training algorithm in semi-supervised situation
is developed. In Chap. 5 an initialization problem for general NMF optimization
problem is discussed, and an efficient initialization scheme based on statistical
independence is proposed. Also, the efficacy of the proposed initialization for
NMF-based source separation task is experimentally confirmed. Finally, Chap. 6
concludes the whole contents and contributions in this dissertation.
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2
Preliminaries

2.1 Introduction

In this chapter, I provide some preliminaries, which are necessary for later
discussion. After giving amathematical formulation of general source separation,
I explain an overview of existing conventional techniques and categorize them
in terms of prior conditions (assumptions) for solving the source separation
problems. Next, motivations for developing new algorithms of music source
separation are clarified, then I introduce a key ingredient of this dissertation,
which is a matrix decomposition algorithm called NMF [11, 5, 12, 13, 14]. Finally,
I summarize the contents in this chapter.
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2.2 Mathematical Formulation

2.2.1 Multichannel Mixing and Demixing Systems

We consider a mixing system of N sound sources and M channels (microphones)
as the following expression [15]:

x̃m(τ) =

N∑
n=1

c̃nm(τ) (2.1)

=

N∑
n=1

Lfilter−1∑
τ′=0

ãnm(τ)s̃n(τ − τ
′), (2.2)

where τ = 1, 2, · · · , τend is the integral index of discrete-time, n = 1, 2, · · · , N and
m = 1, 2, · · · , M are the integral indices of sources and microphones, respectively,
x̃m(τ) is the observed (recorded) time-domain signal of the mth microphone,
c̃nm(τ) is the observed nth source signal obtained by the mth microphone, ãnm(τ)

is a filter coefficient of impulse response that models the acoustic path from the
nth source to the mth microphone, Lfilter is the filter length of ãnm, and s̃n(τ) is the
time-domain signal of the nth original source. The mixing model can also be
expressed by vector form as follows:

x̃(τ) =
N∑

n=1
c̃n(τ) (2.3)

=

N∑
n=1

Lfilter−1∑
τ′=0

ãn(τ)s̃n(τ − τ
′), (2.4)

where x̃(τ) = (x̃1(τ) · · · x̃M(τ))
T is the observed multichannel vector, c̃n(τ) =

(c̃n1(τ) · · · c̃nM(τ))
T is the observed multichannel vector of nth source, which is

often called spatial source image [16], ãn(τ) = (ãn1(τ) · · · ãnM(τ))
T includes the

filter coefficients of acoustic paths from nth source to all the microphones, and ·T

denotes the vector or matrix transpose. The equations (2.2) and (2.4) show the
convolutive mixture of original N sources, which simulates the reverberant
mixture in a recording environment, and the filter length Lfilter corresponds to
the length of the reverberation time. In an anechoic case (Lfilter = 1), the mixing
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Sources MicrophonesAcoustic
paths

Recording environment

Figure 2.1: Mixing system when N = 3 and M = 2, where only direct paths are
depicted as arrows.

system represented above becomes an instantaneous mixture in a time domain.
Figure 2.1 shows the mixing system, where only the direct paths between sources
and microphones are depicted as the arrows. Note that since ãnm is a filter with
length Lfilter, there are many other paths with delays due to the reflection in the
recording environment. The objective of source separation is not the estimation
of original dry source s̃n(τ) but the estimation of the separated observation
c̃nm(τ) or c̃n(τ). The estimation problem of s̃n(τ) from c̃nm(τ) or c̃n(τ) is generally
called dereverberation [17, 18, 19], which is out of the scope and is not treated in
this dissertation.

The mixing system can be transformed via short-time Fourier transform
(STFT) [20, 21] with an analysis window. In particular, when the length of the
analysis window is sufficiently longer than Lfilter, the convolutive mixture model
can be transformed into the instantaneous mixture model in the time-frequency
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domain as

xi j,m =

N∑
n=1

ci j,nm =

N∑
n=1

ai,nmsi j,n, (2.5)

or in the vector form

xi j =

N∑
n=1

ci j,n =

N∑
n=1

ai,nsi j,n, (2.6)

where i = 1, 2, · · · , I and j = 1, 2, · · · , J are integral the indices of frequency bins
and time frames obtained via STFT, respectively, and xi j,m, ci j,nm, ai,nm, and si j,n

are the complex-valued STFT coefficients of the time domain signals x̃m, c̃nm, ãnm,
and s̃i j,n, respectively. The vectors in (2.6) are defined as xi j = (xi j,1 · · · xi j,M)

T,
ci j,n = (ci j,n1 · · · ci j,nM)

T, ai,n = (ai,n1 · · · ai,nM)
T, and si j = (si j,1 · · · si j,N )

T, where
note that xi j , ci j,n, and ai j,n are the multichannel (M × 1) vectors and si j is the
multisource (N × 1) vector. The vector ai,n is called array manifold vector [22]
or steering vector [23, 24], which models the acoustic paths for nth source in
frequency domain. We here consider that the steering vector ai,n is time-invariant,
namely, all the spatial locations of sources and microphones do not change along
the time frame. The time-invariant instantaneous mixture in the time-frequency
domain leads to the following simple mixing representation:

xi j = Ai si j, (2.7)

where

Ai =
(
ai,1 · · · ai,N

)
=

©­­­«
ai,11 · · · ai,N1
...

. . .
...

ai,1M · · · ai,N M

ª®®®¬ (2.8)

is called mixing matrixwhose size is M × N . If the mixing matrix is a full-rank
square matrix (M = N), we can define an inverse matrix of Ai that separates the
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sources in xi j as

yi j =Wixi j, (2.9)

yi j,n = wH
i,nxi j, (2.10)

where yi j = (yi j,1 · · · yi j,N )
T is the estimated (separated) multisource vector,

Wi =

©­­­«
wH

i,1
...

wH
i,N

ª®®®¬ =
©­­­«
w∗i,11 · · · w∗i,1M
...

. . .
...

w∗i,N1 · · · w∗i,N M

ª®®®¬ (2.11)

is called demixing matrix, wi,n = (wi,n1 · · · wi,nM)
T is called demixing filter for nth

source, ·H denotes the Hermitian transpose, and ·∗ denotes the conjugate of
complex value. The estimated time-domain signal ỹn(τ) can be calculated by
applying inverse STFT with overlap-save [25] and the appropriate synthesis
window [26, 27] to yi j,n. The estimation problem of the separated signals ỹn(τ)

without knowing any information about the mixing system ãn(τ) is often called
BSS. In this problem, calibration of the microphones is not required because we
cannot distinguish the frequency responses of the microphones and the effects
caused by the filter coefficients ãn(τ), namely, the difference of characteristics
between the microphones is absorbed by ãn(τ).

Hereafter, I denote the complex-valued spectrograms (I × J time-frequency
matrix) of, nth source signal, mth observed signal, and nth separated signal as
Sn ∈ C

I×J , Xm ∈ C
I×J , and Yn ∈ C

I×J , respectively. Also, the third-order tensor of
source, observed, and separated signals are denoted using sans-serif upright font
as S ∈ CI×J×N , X ∈ CI×J×M , and Y ∈ CI×J×N , respectively. Moreover, the third-order
tensor with a subscript denotes the sliced matrix or the fiber vector [28] in the
original tensor. For example, Xi::, X: j:, and X::m denote the J × M , I × M , and I × J

sliced matrices in X, respectively. Also, Xi j:, Xi:m, and X: jm denote the M × 1, J × 1,
and I × 1 fiber (column) vectors in X, respectively.
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2.2.2 Single-Channel Mixing System

For the case of M = 1, the mixing system can be defined as

x̃(τ) =
N∑

n=1
c̃n(τ) (2.12)

=

N∑
n=1

Lfilter−1∑
τ′=0

ãn(τ)s̃n(τ − τ
′). (2.13)

In the time-frequency domain, (2.12) and (2.13) are transformed as

xi j =

N∑
n=1

ci j,n (2.14)

=

N∑
n=1

ai,nsi j,n. (2.15)

The single-channel source separation is more difficult problem than that for
multichannel signals because differences of amplitudes and phases between
channels cannot be utilized. Thus, typical single-channel source separation
techniques employ some strong constraints or a powerful a priori knowledge for
achieving the objective.

2.3 ExistingConventional Techniques andTheir Cat-
egorization

Audio source separation techniques can roughly be divided in terms of two
aspects; determinacy of mixing system and presence of external supervised
information. The former issue is related to the numbers of sources and channels
(N and M). Since the source separation is an inverse problem, its difficulty directly
depends on these conditions. When the number of sources is equal or less than
the number of channels (N ≤ M), the source separation becomes determined or
overdetermined problem. On the other hand, when the number of sources
is grater than the number of channels (N > M), it is called underdetermined
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Table 2.1: Categorization of typical existing techniques for audio source
separation

Situations Blind Supervised
Spectral supervision Spatial supervision

Determined or FDICA Sound examples Source activities Source locations Steering vectors
overdetermined IVA Multichannel DNN User-guided IVA Fixed BF Robust adaptive BFAdaptive BF

Sparse coding Spectral supervision Spatial supervision

Underdetermined TFM Sound examples Source activities Source locations Steering vectors
TDOA clustering Multichannel DNN User-guided MNMF TFM Dictionary-based MSMMNMF Hybrid method

TFM Spectral supervision Spatial supervision

Single-channel REPET Sound examples Source activities Source locations Steering vectors

KAM Supervised NMF Informed NMF – –DAE

problem, which is tougher than the previous situation. The latter issue is related
to a presence of a priori knowledge for sources. For example, source locations
(spatial positions) can be used for a multichannel source separation techniques.
For the music separation, scores are powerful prior information for estimating
source activities. Also, some instrumental sequences may be available in advance
to train the specific source spectra. Table 2.1 summarizes a categorization
of typical existing techniques for audio source separation techniques, where
they are categorized from the viewpoints of the problem determinacy and
the presence of external supervised information. I explain the details of these
typical techniques below.

In the determined and overdetermined situation, ICA [1, 29, 30, 31, 32, 33, 34,
35] has been the most successful algorithm for the source separation problem.
ICA utilizes the assumption of statistical independence between sources and
estimates the demixing filters from the mixture observations in a fully blind
fashion, which is called BSS. For BSS in audio signals, the sources are convolved
by the room reverberation as (2.4). Many ICA-based separation techniques
for delayed and convolved sources were proposed [36, 37, 38, 39, 40]. Also,
FDICA [2, 41, 42, 34, 43, 35] was developed as another approach for solving the
signal deconvolution using STFT. In FDICA, the demixingmatrix in the frequency
domain,Wi, is estimated for the separation. This method is more stable and
more efficient compared with ICA deconvolution in the time domain because we
can easily treat the convolutive mixing system as the simple instantaneous
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mixture (2.7) by applying STFT to the signals.
For supervised source separation in determined and overdetermined

situations, both fixed and adaptive beamforming (BF) techniques have been
widely used. The source separation based on fixed BF assumes that the locations
of all sources and microphones are known, where the number of microphones
should be large for the accurate separation. Adaptive BF [44, 45, 46, 24] exploits
additional criteria, such as minimum variance and distortionless constraint, to
adaptively reduce the background diffuse noise and extract the target sources. It
is revealed that the estimation in adaptive BF are essentially equivalent to that in
BSS based on FDICA [47] whereas FDICA is a blind (unsupervised) technique.
However, even if the locations of sources and microphones are known, BF-based
methods fail to accurately separate the sources when the source signals are
convolved by room reverberations, which particularly arise in audio recording.
This is because the directions of steering vectors spatially spread around the
true source direction, and the distortionless constraint in adaptive BF cannot
ensure the quality of estimated sources. In some limited cases, the pretrained
steering vectors can be used for BFs as “strict” spatial supervision including
spatial spreads of each source, where the mismatch between the trained steering
vectors and an observation becomes further important problem. Robust adaptive
BF [48, 49, 50, 51, 52] was developed to improve the robustness against such
mismatch of steering vectors.

On the other hand, in the underdetermined situation, ICA has been used
to estimate not the demixing filters but the ICA bases, which is known as an
estimation of overcomplete bases [30, 53, 32]. This approach develops to new
methods such as a sparse coding [54, 55, 56, 57] and a time-frequency masking
(TFM) [58, 59, 60], which are related to the methods in the machine learning or
pattern recognition field. These methods are based on the sparseness of signals,
which is a strong and practical assumption, and can solve the BSS problem even
in the underdetermined situation. However, since the sparseness assumption
does not always hold completely, the sound quality of separated signals is
markedly degraded owing to the generation of artificial noise. Reticently, TFM is
utilized for the estimation of steering vectors [61, 62], and it is reported that this
hybrid approach gives better suppression of diffuse noise in the overdetermined
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situation. Clustering-based underdetermined source separation is developed for
multichannel observations [58, 63, 64, 65, 60, 66], where these techniques rely
on time-difference-of-arrival (TDOA) estimations for each source at multiple
microphones. However, under severe reverberant conditions, TDOA estimations
become unreliable and these clustering-based techniques do not work well.

As another approach, NMF [11, 5, 12, 13, 14] has been introduced for
single-channel BSS [67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. NMF is a low-rank
approximation of an observed nonnegative matrix under nonnegative constraint,
and a small number of meaningful bases can be extracted from the observed
matrix. For acoustic signals, an amplitude or a power spectrogram is used
as the observed matrix in NMF, and the source separation is achieved by
clustering the decomposed bases into each source. In order to utilize spatial
information of each source as a criterion of the clustering, NMF is extended to
multichannel model [77, 78, 79, 80, 6, 81, 82, 83, 84], which has a potential to
solve BSS even in the underdetermined situation. In addition, in recent years,
several new approaches based on a repetitive structure of music signals were
proposed for single-channel blind situation, which are called repeating pattern
extraction technique (REPET) [85, 86, 87, 88, 89, 90] and kernel additive model
(KAM) [91, 92, 93, 94].

As supervised approaches for single-channel signals, supervised NMF [95, 7,
96, 97, 98] is the most reliable method, which directly utilizes training sequences
of each source for clustering the NMF bases. For the multichannel signals, a
hybrid method of binary TFM and supervised NMF was proposed [99], where
the sources are first separated based on spatial cues, then supervised NMF is
effectively applied. A score-informed or user-guided approach with NMF or
MNMF [100, 82, 101, 102, 103] has also been a popular technique for providing
better separation exploiting an external information about the source activities
as supervision. This supervised approach is also applied to the determined BSS,
e.g., user-guided IVA [104]. In addition, multichannel sparse modeling (MSM)
with large-scale spatial dictionary [105, 106] is another approach for spatially
informed underdetermined source separation. In this method, acoustic paths
between many spatial locations and microphones are measured or calculated
in advance to prepare a large-scale spatial dictionary. The mixing system is



16 Chapter 2. Preliminaries

adaptively estimated using sparse modeling and the dictionary. The mismatch
between the dictionary and actual observation is also estimated for the robust
separation [106].

In recent years, underdetermined or single-channel source separation based
on deep neural network (DNN) or denoising autoencoder (DAE) has been a very
active research topic [107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117]. Many
literatures investigate the DNN-based source separation for speech signals [107,
108, 109, 110, 112, 113, 114, 116, 117, 118] and music signals [111, 113, 115] so far.
In the method [118], the NMF decomposition for source modeling in MNMF is
replaced to DNN, resulting in developing a new multichannel DNN-based
audio source separation with spectral supervision. For spatial supervision,
multichannel features are exploited as an input data of DAE to train the spatial
information [119, 120, 114]. However, for the convolutive BSS in time domain,
thousands of coefficients in the separation filters must be trained even with
300 ms reverberation and 8-kHz sampling rate. Thus, to train the spatial features
using DNN with practical dataset may be almost impossible in a real situation.
In addition, DAE-based methods require many pairs of clean and contaminated
source signals. This is a crucial problem in music source separation because we
cannot prepare sufficient number of such pairs in a practical situation.

The main objective of this dissertation is to advance the audio source
separation techniques and develop more practical algorithms that give us better
separation performance. In addition, this dissertation mainly focuses on the
separation of music signals. For this reason, I will aim to only the following
situations:

• Determined and overdetermined BSS

• Single-channel semi-supervised source separation

The first issue, which will be addressed in Chap. 3, is a classical BSS problem,
where we do not assume the spatial supervision. As a motivation to treat BSS,
in a realistic situation, it is almost impossible to accurately train the whole
spatial information including source locations and spatial spreads caused by
reverberations. The almost all audio recordings are always the only once,
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and completely the same situation (mixing system) is never reproduced. The
mismatch-robust approach such as robust adaptive BF is one of the possible
solution, but the blind estimation is most preferable if it can solve the problem.
For the determined and overdetermined observations, ICA-based approaches
have a potential to blindly solve the source separation and have been successful.
However, it usually aims to the separation of speech signals, and the music
signals have not often been treated so far. This might be because the conventional
ICA-based BSS does not provide satisfactory performance for music signals. If
we achieve a better music separation in this situation, various applications using
microphone array can be realized, e.g., remixing or editing of live-recorded
music.

The second issue, which will be addressed in Chap. 4, is also important for
the music source separation because almost all music signals are provided as a
stereo format including more than two sources, namely, the underdetermined
situation. In particular, source separation for single-channel signals is the most
basic framework and can easily be applied for the other situations. Moreover,
for music signals, the users can easily produce synthetic instrumental sounds
using musical instrument digital interface (MIDI) synthesizer or easily record
the actual instrumental sounds of their interesting source part. Therefore, the
spectral supervised approach can also be applied for music source separation.
This dissertation is mainly focused on a semi-supervised method, which utilizes
a training sequence for only the target instruments. This approach is more
practical for many applications than preparing the training sequences for all the
sources, namely, a full-supervised method.

2.4 Motivations for Developing New Algorithms

For determined BSS of speech signals, the conventional ICA-based methods are
well investigated and can achieve better separation performance. However,
for music signals, the separation accuracy tends to be degraded. The main
reason is that typical music signal frequently contains co-occurring sources with
many overlapped spectra, which results in harmony with multiple instrumental
and vocal sources. In such signals, the statistical independence between the
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Limited number of 
discrete pitches

Limited number of 
discrete note values

Figure 2.2: Discreteness in music signals, where score is beginning of Prelude
(op. 28, no. 7) by Frédéric Chopin. Typical music consists of limited number of
discrete parts.

sources is weakened, and ICA-based separation often causes errors of capturing
each source. Also, the conventional ICA-based methods utilize only the source
distribution p(Yn) for the source model, and it has been empirically determined
(e.g., Laplace distribution as a source distribution of speech signals [121]) without
any information about the specific time-frequency structure of each source.
Since BSS is the inverse problem, the separation performance directly depends
on the accuracy of the source distribution p(Yn) or the source model. We can
expect that if we employ stricter source model in ICA algorithm, the separation
performance for music signals would be improved.

In this dissertation, I focus on a property of music signals to effectively
model their spectrograms (source models). Typical music signals include many
reiteration of similar or the same instrumental timbres, melody patterns, chords,
harmonies, and refrains with a stable rhythm. Also, the music signals typically
consist of limited number of components, for example, steady musical tones,
discrete pitches, and discrete notes as shown in Fig. 2.2. This property means
that the spectrogram of a music signal tends to be a low-rank matrix compared
with a speech spectrogram. Here, I explain this property with some example
music and speech signals.

Figures 2.3–2.6 show the power spectrograms of drums, guitar, vocals,
and male speech signals, respectively. These audio signals are obtained from
SiSEC2011 dataset [122]. The power spectrograms are calculated by STFT using
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Figure 2.3: Example of power spectrogram of drums sound obtained from
“another dreamer-the ones we love” in SiSEC2011 dataset, where grayscale
indicates spectral power and white is stronger than black.

Figure 2.4: Example of power spectrogram of guitar sound obtained from
“another dreamer-the ones we love” in SiSEC2011 dataset, where grayscale
indicates spectral power and white is stronger than black.
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Figure 2.5: Example of power spectrogram of vocals sound obtained from
“another dreamer-the ones we love” in SiSEC2011 dataset, where grayscale
indicates spectral power and white is stronger than black.

Figure 2.6: Example of power spectrogram of male speech sound obtained
from “dev1_male3_src” in SiSEC2011 dataset, where grayscale indicates spectral
power and white is stronger than black.
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Figure 2.7: Example of cumulative singular values of music and speech
spectrograms, where all signals are truncated to be the same signals length.

256-ms-long Hamming window with 192-ms-long overlap. Also, Fig. 2.7 shows
their cumulative singular values. It is obviously confirmed that the drums and
guitar signals contain many similar or the same spectral patterns compared with
the vocals and speech signals, which results in reducing the rank of the power
spectrogram as shown in Fig. 2.7. Therefore, if we can extract a limited number
of significant spectral patterns from the low-rank music spectrogram as the
bases, the signal can effectively be modeled using such bases as the “low-rank
approximation.” The approximated model spectrogram of each source can
directly be used as the strict source model in conventional ICA algorithm.

For this reason, I consider that NMF decomposition is certainly suitable
for modeling the spectrogram of music signals because we can blindly extract
significant nonnegative bases and their coefficients, which correspond to the
frequently appearing spectral patterns and their time-varying gains. Indeed,
many tasks related to the music signals have been addressed using NMF,
e.g., [123, 124, 79, 125, 71, 126, 127, 100, 128, 129, 130, 131, 132, 98, 99, 133].
Therefore, the unification of ICA-based source separation and the NMF-based
source modeling will provide better performance for the multichannel music
source separation task.
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As another issue, the conventional single-channel source separation based on
semi-supervised or full-supervised NMF (SSNMF or FSNMF) does not always
provide satisfactory separation although it utilizes the training sequence for
target source or all the sources. This is because the pre-trained NMF bases
(supervised bases) may represent not only the relevant source but also different
sources when the sources share similar or the same spectral patterns. Even if the
supervised bases are prepared for all the sources in FSNMF, this problem may
occur, resulting in the degradation of separation performance. As a means of
avoiding this problem, several techniques for training discriminative supervised
bases were proposed [134, 135, 8, 9, 136, 137, 10]. However, these methods are
only applicable to the full-supervised situation, and no one investigates the
discriminative training for SSNMF.

In this dissertation, I contribute the above-mentioned issues, namely, a
unified algorithm of ICA-based BSS and NMF source model for the determined
and overdetermined BSS problems in Chap. 3 and a discriminative NMF basis
training for single-channel semi-supervised source separation problem in
Chap. 4. Since both contributions are based on NMF algorithm, in the next
section, I provide a basic principle of NMF as a preliminary for the later chapters.

2.5 Basic Principle of NMF

NMF is an unsupervised data decomposition technique and a latent variable
analysis that can be used for, e.g., topics recovery, feature learning, clustering,
temporal segmentation, filtering and source separation, and coding. There has
been a variety of successful applications: text mining [138, 139], image signal
processing (e.g., object discovery [140], face recognition [141], tagging [142],
denoising and inpainting [143], texture classification [144], hashing [145], and
watermarking [146]), feature extraction [147, 148] and artifact rejection [149, 150]
for electroencephalography signals, and even in the bioinformatics field [151, 152,
153]. In audio signal processing, source separation based onNMF for both speech
and music signals is well-studied and still a growing research topic as described
in Sect. 2.3. Moreover, audio denoising [154, 155], audio inpainting [156, 157],
compression [158], and music transcription [123, 159, 160, 161, 125, 162, 163] are
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also investigated with NMF.

NMF approximately decomposes an observed nonnegative data matrix
∆ ∈ RΦ×Ψ

≥0 into a product of two nonnegative matrices F ∈ RΦ×K
≥0 and G ∈ RK×Ψ

≥0 as

∆ ≈ ∆̂ = FG, (2.16)

δφψ ≈ δ̂φψ =

K∑
k=1

fφkgkψ, (2.17)

where F = ( f1 · · · fK) is called basis matrix that involves NMF bases fk as
the column vectors, G = (g1 · · · gK)

T is called activation matrix that involves
coefficient vectors gk for each basis as the row vectors, δφψ , δ̂φψ , fφk , and gkψ are
the nonnegative entries of the matrices ∆, ∆̂, F, and G, respectively, Φ and Ψ are
the numbers of rows and columns of the matrix ∆, respectively, K is the number
of bases, and φ = 1, 2, · · · ,Φ, ψ = 1, 2, · · · ,Ψ, and k = 1, 2, · · · ,K are the integral
indices for the rows, columns, and bases. Since the main objective of NMF is to
reduce the dimensionality and find a low-rank representation with nonnegative
parts, the number of bases K should be set to a small value as K � min(Φ,Ψ).
The basis vectors can be considered as nonnegative parts representing the
observed data, where only linear combinations with nonnegative coefficients are
allowed. As a result, the obtained bases and activations can often be interpreted
intuitively, and they should be the latent and meaningful features in the observed
data matrix ∆. For audio signals, a magnitude or power spectrogram obtained
via STFT is often used as the input nonnegative data matrix ∆. In this case, the
bases vectors correspond to the frequently-appearing spectral patterns in the
spectrogram, and the activation vectors represent time-varying gains of each
spectral pattern. Figure 2.8 shows an example of NMF decomposition for audio
spectrogram data, where ∆ includes two harmonic tones with some overlaps.
The obtained basis vectors in F correctly capture the spectra of each tone, and
their gains are represented as the activation vectors in G. In this decomposition,
the two rank-1 matrices, f1gT

1 and f2g
T
2 , represent each tonal spectrogram, and

they are superposed for approximately representing the observed spectrogram
as ∆ ≈ f1g

T
1 + f2g

T
2 . Therefore, the source separation based on NMF can be

considered as a clustering problem of K bases into N sources.
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Figure 2.8: Decomposition model of simple NMF, where K = 2. Basis matrix
involves representative spectral patterns, and activation matrix represents
time-varying gains for each basis.

In NMF, we find the decomposed bases and their activations by minimization
of the distance or divergence between the observed data ∆ and an approximated
model ∆̂ = FG as follows:

min
F,G
D(∆‖∆̂) s.t. fφk, gkψ ≥ 0 ∀φ, ψ, k, (2.18)

whereD(·‖·) denotes an arbitrary divergence (dissimilarity). Various divergences
have been utilized, e.g., the squared Euclidean distance (EUdistance), generalized
Kullback–Leibler divergence (KL divergence) [164], and Itakura–Saito divergence
(IS divergence) [165]. As a generalized criterion, β divergence [166] Dβ(·‖·) is
also introduced into NMF:

Dβ(∆‖∆̂) =



∑
φ,ψ

©­«
δ
β
φψ

β (β − 1)
+
δ̂
β
φψ

β
−
δφψ δ̂

β−1
φψ

β − 1
ª®¬ (β ∈ R\{0, 1})

∑
φ,ψ

©­«δφψ log
δφψ

δ̂φψ
+ δ̂φψ − δφψ

ª®¬ (β = 1)

∑
φ,ψ

©­«
δφψ

δ̂φψ
− log

δφψ

δ̂φψ
− 1ª®¬ (β = 0)

. (2.19)



2.5 Basic Principle of NMF 25

When β = 2, β = 1, and β = 0, the β divergence becomes identical to EU distance,
KL divergence, and IS divergence, respectively. In the context of audio source
separation, KL divergence and IS divergence are often used because they usually
give us a better separation performance than EU distance.

Since the simultaneous minimization of F and G based on (2.18) is not
convex, regardless of the type of divergence, the closed-form solution for (2.18)
have yet to be found. However, for the alternating optimization of F and G,
efficient iterative update rules have been derived [5, 12, 167, 168] using the
auxiliary function technique [12], which is the generalized optimization approach
of expectation-maximization (EM) algorithm [169] and is also known as the
majorization-minimization algorithm [170, 171, 172]. For β-divergence-based
NMF, the following multiplicative update (MU) rules efficiently minimize the
value of cost function (2.18):

fφk ← fφk

[∑
ψ δφψgkψ

(∑
k ′ fφk ′gk ′ψ

) β−2∑
ψ gkψ

(∑
k ′ fφk ′gk ′ψ

) β−1

]ϕ(β)
, (2.20)

gkψ ← gkψ

[∑
φ fφkδφψ

(∑
k ′ fφk ′gk ′ψ

) β−2∑
φ fφk

(∑
k ′ fφk ′gk ′ψ

) β−1

]ϕ(β)
, (2.21)

where ϕ(β) is given by

ϕ(β) =


1

2 − β
(β < 1)

1 (1 ≤ β ≤ 2)
1

β − 1
(β > 2)

. (2.22)
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The update rules (2.20)–(2.21) can also be rewritten in a matrix form as follows:

F ← F ◦


[
∆ ◦ (FG).(β−2)

]
GT[

(FG).(β−1)
]
GT


.ϕ(β)

, (2.23)

G← G ◦


FT

[
∆ ◦ (FG).(β−2)

]
FT

[
(FG).(β−1)

] 
.ϕ(β)

, (2.24)

where ◦ and the quotient symbol for matrices denote the Hadamard product
(entrywise multiplication) and entrywise division, respectively, and the dotted
exponent for matrices denotes entrywise exponent. The iteration of these update
rules ensures the monotonic decrease of the cost function. In (2.20) and (2.21),
the initial values for fφk and gkψ must be given for all φ, ψ, and k. This fact means
that the initial values influence the decomposed solution because there exist
many local minimum solutions. Since all the results in NMF-based applications
including the methods treated in Chaps. 3 and 4 directly depend on these initial
values, the effective initialization method for NMF is one of the big problems.
This issue will be treated in Chap. 5.

2.6 Summary

In this chapter, a mathematical formulation for general source separation
problems was introduced. Next, typical and popular source separation methods
were reviewed. In addition, motivations for developing new source separation
algorithms were explained. Finally, a key ingredient of this dissertation,
NMF, was introduced with theoretical and mathematical principles. In the
following chapters, the main contribution of this dissertation will be discussed;
determined and overdetermined BSSwill be addressed in Chap. 3, single-channel
semi-supervised source separation will be treated in Chap. 4, and a better
initialization for NMF will be addressed in Chap. 5.
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3
Determined and Overdetermined
Blind Source Separation Based on

Independent Low-Rank Matrix
Analysis

3.1 Introduction

In this chapter, I address the determined BSS problem and propose a new efficient
algorithm that unifies conventional ICA-based BSS and NMF-based source
model. First, I introduce some basic principles of ICA, FDICA, IVA [3, 4, 173],
and NMF based on IS divergence (hereafter referred to as ISNMF) [125], which
are necessary for the main contribution in this chapter. Next, a new efficient
BSS technique is described with its motivations and optimization algorithms.
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After giving an explanation of the relationship between IVA, MNMF, and the
proposed method, the efficacy of the proposed method for BSS task is validated
via experimental analysis and comparison. In addition, further extension of the
proposed method for overdetermined BSS problem is addressed. Finally, the
whole contents in this chapter are summarized.

3.2 Basic Principles of ICA, FDICA, IVA, and ISNMF

While many text books for ICA have been published [30, 31, 32, 33] so far, I
briefly introduce some basic principles of ICA and FDICA. Also, IVA, and ISNMF
are explained with their motivations. These algorithms and their statistical
backgrounds are important and necessary for introducing the motivations of the
proposed method.

3.2.1 ICA and FDICA

ICA, which is sometimes regarded as synonymous with BSS, relies on non-
Gaussianity, namely, the independent sources s̃n(τ) in the observed mixture x̃m(τ)

are inherently generated from non-Gaussian distributions. This assumption
makes the BSS problem solvable because the mixture of sources tends towards a
Gaussian distribution even if the original sources themselves obey non-Gaussian
distributions, which is known as the central limit theorem. Therefore, if we
determine the statistical model of separated signals ỹn(τ) as p(ỹn) and if M = N

(determined) and Lfilter = 1 (instantaneous mixture), we can basically estimate
the original ỹn(τ) from the mixture x̃(τ) by ICA, while the sources must truly
obey the non-Gaussian distributions.

Let us assume that M = N , Lfilter = 1, and the mixing system is described as

x = As (3.1)

≡ Ay, (3.2)

where tildes and the time index τ are omitted for the simplicity, and all the
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variables are real values. The probability p(x) can be written using Jacobian

∂y

∂x
= | det A−1 |, (3.3)

as

p(x) = | det A−1 | · p(y) (3.4)

= | detW | ·
∏

n

p(yn), (3.5)

whereW = A−1, and p(s) =
∏

n p(sn) are obtained by assuming mutual indepen-
dence between yn for all the sources. Since the signals x, s, and y have τend

samples, the likelihood of W is given by

L(W ) =
∏
τ

∏
n

p(wT
n x(τ))| detW |, (3.6)

where wn is a row vector in W . Also, the log-likelihood function is obtained as

logL(W ) =
∑
τ

∑
n

p(wT
n x(τ)) + τend log | detW |. (3.7)

By replacing the sum of τ to the expectation operator E[·], we can rewrite (3.7) as

1
τend

logL(W ) = E

[∑
n

p(wT
n x)

]
+ log | detW |. (3.8)

The maximum likelihood (ML) estimation in ICA can be obtained by differen-
tiating (3.8) with respect toW . The gradient of (3.8) can easily be calculated
as

1
τend

∂ logL(W )
∂W

= E
[
S(Wx)xT] + (

WT
)−1

, (3.9)

where

S(y) =
∂ log p(y)

∂y
(3.10)
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is called the score functionornonlinear function in the context of ICAoptimization.
From (3.9), the steepest gradient descent for ICA can be derived as

W ← W + η

{
E

[
S(Wx)xT] + (

WT
)−1

}
, (3.11)

where η is a stepsize parameter. This algorithm is often called Bell–Sejnowski
algorithm, which is firstly derived from another ICA principle called Infomax
approach [174]. The algorithm (3.11) is extended to a natural gradient [175, 33]
method that is based on a geometric structure in the parameter space, as

W ← W + η
{
E

[
S(W y)yT] + I

}
W . (3.12)

This algorithm ismore efficient than (3.11) because the gradient for the parameters
are defined in Riemannian metric, and the inverse calculation ofW is omitted.
In addition, for the minimization of (3.9), fast and stable update rules called
iterative projection (IP) based on the auxiliary function technique have been
proposed [176]. Note that there exists signal permutation and scaling ambiguities
in ICA solution, namely,

y ← ΛΥy (3.13)

is also a solution for any permutation matrix Υ and diagonal matrix Λ. This is
because the solution in ICA is only based on a statistic source model p(ỹn) and its
independence between the sources. In many ICA applications, the source model
p(ỹn) or its score function is empirically set to the appropriate ones, e.g., Laplace
distribution for super-Gaussian sources.

For the BSS problem of acoustic signals, the sources are convolved with
reverberation in a recording environment as represented in (2.4), and it becomes
a deconvolution problem. Many ICA-based deconvolution techniques for
solving BSS problem in time-domain were proposed [36, 37, 38, 39, 40]. However,
the estimation of inverse filters in the time domain is still a tough problem
because the number of parameters drastically increases when the filter length
Lfilter becomes large. Instead of solving the time-domain deconvolution,
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FDICA [2, 41, 42, 34, 43, 35] was proposed. In this approach, the instantaneous
mixture in the frequency domain is assumed as (2.6). When the mixing filter
length Lfilter is much shorter than the length of analysis window in STFT,
this assumption becomes valid. In FDICA, the simple ICA is independently
applied in each of frequency bins, and the frequency-wise demixing matrix Wi is
estimated for the separation. The optimization algorithm for FDICA is identical
to that for simple ICA with complex-valued signals [121, 177]. However, in
FDICA, the permutation ambiguity of separated signals becomes a serious
problem because the separated components in each frequency bin must be
correctly aligned as shown in Fig. 3.1. This alignment problem is often called
permutation problem, and many criteria for solving this ambiguity have been
proposed [178, 179, 180, 181]. The popular permutation solver is using direction
of arrival (DOA) of each source [178], where DOA can be calculated from the
estimated demixing filter wn. In [180], the correlations between frequency bins
are simultaneously exploited with DOA information for solving the permutation
problem. The scaling ambiguity should also be solved after the estimation of Wi

in FDICA. The simplest way for recovering signal scales is projecting them to the
observed signals, as

ĉi j,n ← W−1
i (en ◦ y) , (3.14)

where ĉi j,n = (ĉi j,n1 · · · ĉi j,nM)
T is an estimated source image whose scale is fitted

to the observed signals at each microphone, and en denotes the M × 1 unit vector
with the nth element equal to unity. This calculation is called the back projection
technique [179].

3.2.2 IVA

IVA [3, 4, 173] is a multivariate extension of FDICA and can solve the BSS
problem while avoiding the permutation problem. In IVA, we assume the
multivariate source vector s j,n, observed vector x j,m, and separated vector y j,n,
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Figure 3.1: Permutation problem in FDICA and its solver, where N = M = 2.

which consist of all the frequency bins, as

s j,n = (s1 j,n · · · sI j,n)
T, (3.15)

x j,m = (x1 j,m · · · xI j,m)
T, (3.16)

y j,n = (y1 j,n · · · yI j,n)
T. (3.17)

Figure 3.2 shows the mixing and demixing model in IVA, where N = M = 2.
In IVA, all the source, observed, and separated signals are represented as
frequency vector variables, whereas FDICA independently models each of
the frequency components resulting in the permutation problem. In addition,
higher-order correlations between the frequency components in each source (or
separated) vector are introduced by assuming spherically symmetric multivariate
source distributions p(s j,n) ≈ p(y j,n) = p(y1 j,n, · · · , yI j,n), where the spherically
symmetric property means that the distribution is a function of only the norm of
multivariate vector variable, i.e., p(y j,n) = f (‖y j,n‖).

In the literature [3, 4, 173], a spherically symmetric multivariate Laplace
distribution [182, 183] was exploited as a super-Gaussian source distribution for
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Figure 3.2: Mixing and demixing model in IVA, where N = M = 2.

modeling speech sources. This distribution is shown in Fig. 3.3 and is defined as

p(s j,n) ≈ p(y j,n) = ρ exp ©­«−
√√∑

i

���� yi j,n

ri,n

����2ª®¬ , (3.18)

where ρ is a normalization term and ri,n is the variance, which determines the
signal scale of yi j,n. Since the source distribution has a spherically symmetric
property, higher-order correlations between the frequency components in
each source are assumed, which results in avoiding the permutation problem.
Hereafter, IVA based on the source distribution (3.18) is referred to as Laplace IVA.

From the generative source model p(s j,1, · · · , s j,N ) ≈ p(y j,1, · · · , y j,N ) and
the demixing system (2.9), p(x j,1, · · · , x j,M) can be obtained by multiplying
p(y j,1, · · · , y j,N ) by the Jacobian

∂(y j,1, · · · , y j,N )

∂(x j,1, · · · , x j,M)
=

∏
i

| detWi |
2; (3.19)

note that the Jacobian for a complex-valued variable is the square of the Jacobian
for a real-valued variable [177]. Therefore, the likelihood function L(W ) of the
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Figure 3.3: Spherically symmetric multivariate Laplace distribution, where s̄i j,n
can be considered as either real or imaginary part of si j,n and I = 2 (bivariate
case). Two frequency components s1 j,n and s2 j,n are uncorrelated but have mutual
dependences, which is called higher-order correlation.

parameter setW = {Wi |i = 1, · · · , I} is given as

L(W ) =
∏

j

p(x j,1, · · · , x j,M |W ) (3.20)

=
∏

j

[
p(y j,1, · · · , y j,N ) ·

∏
i

| detWi |
2

]
(3.21)

=
∏

j

{[∏
n

p(y j,n)

]
·
∏

i

| detWi |
2

}
, (3.22)

where p(y j,1, · · · , y j,N ) =
∏

n p(y j,n) is obtained by assumingmutual independence
between y j,n for all the sources. The negative log-likelihood function can be
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calculated as

− logL(W ) = −
∑
i, j

log | detWi |
2 −

∑
j,n

log p(y j,n) (3.23)

= − 2J
∑

i

log | detWi | +
∑
j,n

G(y j,n), (3.24)

where G(y j,n) = − log p(y j,n) is called the contrast function, which depends on
the source distribution p(y j,n). Note that since yi j,n = wH

i,nxi j , the separated
signal y j,n includes the optimization variableWi. The ML estimation based on
(3.24) is equivalent to the well-known estimation [29, 32] that maximizes the
independence between all the sources with the KL divergence DKL as follows:

∑
j

DKL

(
p(y j,1, · · · , y j,N )‖

∏
n

p(y j,n)

)
=

∑
j

∫
p(y j,1, · · · , y j,N ) log

p(y j,1, · · · , y j,N )∏
n p(y j,n)

dy j,1 · · · dy j,N (3.25)

= const. − 2J
∑

i

log | detWi | +
∑
j,n

G(y j,n). (3.26)

On the basis of the source distribution (3.18), the contrast function G(y j,n) and
the cost function in Laplace IVA can be obtained as follows:

G(y j,n) = − log ρ + ‖y j,n‖2, (3.27)

− logL(W ) = const. − 2J
∑

i

log | detWi | +
∑
j,n

‖y j,n‖2, (3.28)

where ‖ · ‖2 denotes the `2 norm. Also, the variance is set to ri,n = 1 for all i and n

because the scales of separated signals cannot be determined by ICA or IVA,
and they can be recovered by the back-projection technique (3.14) after the
separation. Similar to the simple ICA, IP-based efficient update rules have been
proposed [184, 185, 186].

Figure 3.4 shows the principles of source estimation in FDICA and Laplace
IVA. The demixing matrixWi is optimized so that the estimated signals yi j,n

obay the assumed non-Gaussian source model. Whereas FDICA assumes the
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Figure 3.4: Principles of source estimation in (a) FDICA and (b) Laplace IVA.
Separation filter (demixing matrix) is optimized so that estimated signals obey
non-Gaussian source model. Whereas FDICA assumes non-Gaussian source
distribution p(si j,n) for each frequency component, IVA assumes non-Gaussian
multivariate source distribution p(s j,n) that has spherically symmetric property.

non-Gaussian source distribution p(si j,n) for each frequency component, IVA
assumes the non-Gaussian spherically symmetric source distribution p(s j,n) for
the frequency vector variables.

3.2.3 ISNMF

When we apply NMF to an acoustic signal, the power spectrogram obtained via
STFT is considered as an observed nonnegative matrix and can be decomposed
into two nonnegative matrices as

|D |.2 ≈ TV, (3.29)
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Figure 3.5: Circularly symmetric complex Gaussian distribution. Probability
does not depend on phase arg(qi jl) but only depends on amplitude |qi jl | or
power |qi jl |

2 because of circularly symmetric property.

where D ∈ CI×J is a complex-valued spectrogram, the absolute | · | for matrices
denote the entrywise absolute value, T ∈ RI×L

≥0 is the basis matrix, V ∈ RL×J
≥0 is the

activation matrix, and L is the number of bases.

Since the transformation of complex spectrograms into power (or amplitude)
spectrograms is nonlinear, power spectrograms are non-additive, namely, the
power spectrum of the sum of two waveforms is not equal to the sum of the
power spectra of the two waveforms. This implies that decomposing a power
spectrogram into the sum of additive components does not necessarily lead to an
appropriate decomposition of the audio signal. However, the decomposition
based on ISNMF applied to the power spectrogram ensues such spectral
additivity in the expectation sense, which has been given by Févotte, et al. [125].

Let us assume that L complex-valued spectrograms qi j1, · · · , qi jL are generated
from circularly symmetric complex Gaussian distribution [187], which are
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independently defined in each time-frequency slot as follows:

p(qi jl) =
1
πri jl

exp

(
−
|qi jl |

2

ri jl

)
, (3.30)

where l = 1, · · · , L is the integral index of L components and ri jl is the
nonnegative variance of each distribution. Figure 3.5 shows the circularly
symmetric complex Gaussian distribution. Since the distribution has a circularly
symmetric property in the complex plane, the probability does not depend on
the phase arg(qi jl) and only depends on the amplitude |qi jl | or power |qi jl |

2. Note
that the variance ri jl corresponds to the expectation value of the power spectrum
|qi jl |

2, namely, ri jl = E[|qi jl |
2]. When the variance ri jl is large, the distribution

becomes wider, and the complex-valued spectrum qi jl with a large power can
easily be generated, while the phase of qi jl is always uniformly distributed. In
addition, if we assume that the observation di j , which is the complex-valued
entry of D, is the sum of the components qi jl , namely, di j =

∑
l qi jl , the following

generative model can also be assumed because of the reproductive property in
complex Gaussian distributions:

p(D) =
∏
i, j

p(di j) (3.31)

=
∏
i, j

1
πri j

exp

(
−
|di j |

2

ri j

)
, (3.32)

where ri j =
∑

l ri jl . This fact means that the additivity of power spectra |qi jl |
2 is

held only in the expectation sense, and the superposed component di j =
∑

l qi jl is
also assumed to obey the circularly symmetric complex Gaussian distribution
with the superposed variance ri j =

∑
l ri jl . In [188], the model of power

spectrogram (3.32) is extended to a maximum a posteriori framework using
inverse Gamma prior for the variances.

The likelihood function of T and V can be obtained as follows by putting
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ri jl = tilvl j ;

L(T,V ) = p(D |T,V ) (3.33)

=
∏
i, j

1
π
∑

l tilvl j
exp

(
−
|di j |

2∑
l tilvl j

)
, (3.34)

where til and vl j are the nonnegative entries of T and V , respectively. The
negative log-likelihood function is

− logL(T,V ) =
∑
i, j

(
log π + log

∑
l

tilvl j +
|di j |

2∑
l tilvl j

)
. (3.35)

It is clear that the ML estimation based on (3.35) is equivalent to the minimization
of IS divergence DIS [165] between |D |.2 and TV :

DIS

(
|D |.2‖TV

)
=

∑
i, j

(
|di j |

2∑
l tilvl j

− log
|di j |

2∑
l tilvl j

− 1

)
(3.36)

= const. +
∑
i, j

(
|di j |

2∑
l tilvl j

+ log
∑

l

tilvl j

)
. (3.37)

Thus, when ISNMF is applied to the observed power spectrogram |D |.2, it is
assumed that di j follows the generative model (3.32) and the components qi jl

are mutually independent. The multiplicative update rules for T and V that
minimize (3.35) or (3.37) are given by [167]

til ← til

√√√∑
j |di j |

2vl j
(∑

l ′ til ′vl ′ j
)−2∑

j vl j
(∑

l ′ til ′vl ′ j
)−1 , (3.38)

vl j ← vl j

√√√∑
i |di j |

2til
(∑

l ′ til ′vl ′ j
)−2∑

i til
(∑

l ′ til ′vl ′ j
)−1 . (3.39)

These MU rules are identical to (2.20) and (2.21) when we set β = 0.



40
Chapter 3. Determined and Overdetermined Blind Source Separation Based

on Independent Low-Rank Matrix Analysis

3.2.4 Time-Varying Gaussian IVA

Laplace IVA employs the spherically symmetric Laplace distribution as a
super-Gaussian source distribution. The model ensures that all the frequency
components in the same source have higher-order correlation. As another
super-Gaussian source model with the higher-order correlation, in [104], the
circularly symmetric complex Gaussian distribution with time-varying variance
r j,n is introduced to conventional IVA instead of the stationary distribution:

p(y1,n, · · · , yJ,n) =
∏

j

p(y j,n)

=
∏

j

1
πr j,n

exp

(
−
‖y j,n‖

2
2

r j,n

)
, (3.40)

where the time-varying variance r j,n is shared over the frequency bins in each
time frame. Similar to (3.18), the distribution (3.40) has the spherically symmetric
property for the multivariate vector y j,n because p(y j,n) only depends on the
vector norm ‖y j,n‖2. Also, the distribution is assumed to bemutually independent
for time frames and sources. Whereas the temporal source model p(y j,n) is based
on the Gaussian distribution, the global source model p(Yn) = p(y1,n, · · · , yJ,n)

becomes the super-Gaussian distribution because of the time-varying variance
r j,n [186]. This time-varying Gaussian source model has been adopted for many
techniques, e.g., BSS [189, 190] and dereverberation of speech signals [191].
Hereafter, IVA based on the source distribution (3.40) is referred to as time-varying
Gaussian IVA.

Figure 3.6 (a) shows the source model (variance structure in a time-frequency
region) assumed in time-varying Gaussian IVA. Since the variance r j,n is shared
over the frequency bins, it can be interpreted as an uniform (flat) spectral
basis. On the other hand, ISNMF has a more flexible source model because
the variance ri j is independently defined in each time-frequency slot as shown
in Fig. 3.6 (b). It allows us to model the specific time-frequency structure
with limited numbers of bases and activations. Similar to (3.40) and Fig. 3.6
(a), the time-frequency-varying source model (3.32) and Fig. 3.6 (b) are the
super-Gaussian distribution because of the time-frequency-varying variance ri j,n.
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Figure 3.6: Comparison of source models (variance structures) in (a) IVA and (b)
ISNMF, where grayscale in each time-frequency slot indicates scale of variance.
IVA has uniform variance over frequency bins, and all the frequency bins have
the same activations (time-varying gains), whereas ISNMF employs limited
number of bases to capture low-rank structure resulting in more flexible source
model.

Thus, it can also be used as a source distribution in ICA-based methods.

3.3 Independent Low-Rank Matrix Analysis

3.3.1 Motivation and Strategy

For speech signal separation, Laplace IVA or time-varying Gaussian IVA can
achieve better performance than FDICA. However, since only the higher-order
correlation defined in (3.18) or (3.40) is utilized as a spectral structure in the
source model, IVA cannot treat the specific harmonic structures of each source
and lacks flexibility, as shown in Fig. 3.6. For this reason, IVA is not suitable for
sources that have characteristic (specific) spectral structures, such as instrumental
sounds or music signals. NMF decomposition is suitable for modeling the
spectrogram of music or instrumental signals because such signals typically
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consist of a limited number of components, for example, steady musical tones,
discrete pitches, and discrete notes, as described in Sect. 2.4. This property
means that the spectrogram of a music signal tends to be a low-rank matrix
compared with a speech spectrogram.

In [104], the temporal power variation of sources provided by a user is
exploited as the prior distribution of the time-varying gain r j,n, which is defined
as an inverse gamma distribution. In [192], a newmultichannel source separation
method with external model information has been proposed, which is called
model-based IVA. In this approach, we consider that the time-frequency variance
ri j,n for each source is given by another technique (e.g., single-channel spectral
subtraction, voice activity detection, or time-frequency binary masking) applied
in advance. The demixingmatrixWi is estimated on the basis of the independence
between sources taking the given variance ri j,n into account. These approaches
show that the estimation of Wi based on a correct and precise variance will
provide better separation performance.

On the basis of these ideas, in this chapter, I introduce ISNMF to IVA for
decomposing the sourcewise variance ri j,n using a limited number of NMF bases,
where the demixing matrixWi and the source model p(y j,1, · · · , y j,N )with the
NMF variables are simultaneously estimated in a fully blind fashion. This
approach is a natural extension of time-varying Gaussian IVA because we
extend the vector source model (frequency-uniform variance) to the low-rank
matrix source model (NMF decomposition) as shown in Fig. 3.6. For this
reason, hereafter, I call the proposed method independent low-rank matrix
analysis (ILRMA) [193, 194]. Similarly to standard FDICA or IVA, ILRMA is
applicable to the determined case (M = N). In the overdetermined case (M > N),
dimensionality reduction using principal component analysis (PCA) should be
applied so that M = N .

3.3.2 Derivation of Cost Function

In ILRMA, similarly to ISNMF, the circularly symmetric complex Gaussian
distribution is independently assumed to be as follows in each time-frequency
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slot as the source model of the separated signal;

p(Y1, · · · ,Yn) =
∏

j

p(y j,1, · · · , y j,N ) (3.41)

=
∏
n, j

p(y j,n) (3.42)

=
∏
n,i, j

1
πri j,n

exp

(
−
|yi j,n |

2

ri j,n

)
, (3.43)

where ri j,n is the sourcewise variance that corresponds to the expectation of
the power spectrogram, namely, ri j,n = E[|yi j,n |

2]. The contrast function and
the negative log-likelihood function of the parameter setW and R = {ri j,n |i =

1, · · · , I; j = 1, · · · J; n = 1, · · · N} are given as

G(y j,n) =
∑

i

(
log πri j,n +

|yi j,n |
2

ri j,n

)
(3.44)

= I log π +
∑

i

(
log ri j,n +

|yi j,n |
2

ri j,n

)
, (3.45)

− logL(W, R) = const. − 2J
∑

i

log | detWi | +
∑
i, j,n

(
log ri j,n +

|yi j,n |
2

ri j,n

)
(3.46)

≡ LILRMA. (3.47)

Here, I consider two types of ri j,n decomposition depending on the presence of a
partitioning function:

ri j,n =
∑

l

til,nvl j,n, (3.48)

ri j,n =
∑

k

znk tikvk j, (3.49)

where til,n and vl j,n are the nonnegative entries of Tn ∈ R
I×L
≥0 and Vn ∈ R

I×L
≥0 that are

the sourcewise basis and activation matrices, and tik and vk j are the nonnegative
entries of T and V that include K bases and activations, respectively. Moreover,
znk ∈ [0, 1] is the entry of Z = (z1 · · · zN )

T ∈ RN×K
{0, 1} , which is a partitioning function
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that clusters K bases into N sources and satisfies
∑

n znk = 1, and k = 1, · · · ,K
is the new basis index. In (3.48), a fixed number of bases, L, is utilized to
decompose each separated source spectrogram |yi j,n |

2. On the other hand,
we can adaptively determine the number of bases for each separated source
spectrogram by employing the partitioning function znk as (3.49). In this model,
we only set the total number of bases to K . This approach is reasonable because
the optimal number of bases will depend on the time-frequency structure of
each source. For a source that consists of a low-rank power spectrogram, such as
an instrumental signal, the number of bases should be small, whereas a speech
or vocal spectrogram may require more bases for its precise representation. The
cost function in ILRMA can be obtained by substituting (3.48) or (3.49) into (3.46).

In Laplace IVA, the variance ri,n is uniformly set to unity over the frequency
bins, and is not estimated. This is because the variance only determines the
signal scale of yi j,n, and it can be restored by the back-projection technique. In
time-varying Gaussian IVA, only the activation for the uniform variance is
estimated based on the prior information given by users. On the other hand, the
variance in ILRMA, ri j,n, is blindly estimated by low-rank decomposition using
NMF (3.48) or (3.49) to capture the time-frequency structure as shown in Fig. 3.6
(b). It is clear that when the number of bases is set to one for every source and all
bases have a flat spectrum, the source models in time-varying Gaussian IVA and
ILRMA become identical. This fact shows that ILRMA includes time-varying
Gaussian IVA as a special case, which will be discussed in Sect. 3.5.

3.3.3 Update Rules

For the optimization of ICA or IVA, IP-based update rules, which can be derived
using the auxiliary function technique, have been proposed [176, 184, 185, 186,
104, 192], and it has been reported that these update rules are faster and more
stable than those for a conventional update scheme (e.g., natural gradient
method [175, 33]) and that the step size parameter can be omitted in each
iteration. Regarding the estimation of Wi, the differential of (3.46) w.r.t. Wi

becomes equivalent to that of the auxiliary bounding function in Laplace
IVA [184]. For this reason, the update rules of Wi based on IP can easily be
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derived as follows:

Vi,n =
1
J

∑
j

1
ri j,n

xi j x
H
i j , (3.50)

wi,n ←
(
WiVi,n

)−1
en, (3.51)

wi,n ← wi,n

(
wH

i,nVi,nwi,n

)− 1
2
. (3.52)

After the update ofWi, the separated signal yi j should be updated as

yi j,n ← wH
i,nxi j . (3.53)

If we eliminate the partitioning function znk , which is ILRMA with (3.48), the
differential of (3.46) w.r.t. til,n or vl j,n becomes identical to the differential of the
cost function in ISNMF (3.37). Therefore, the update rules of til,n and vl j,n are
given as

til,n ← til,n

√√√∑
j |yi j,n |

2vl j,nr−2
i j,n∑

j vl j,nr−1
i j,n

, (3.54)

vl j,n ← vl j,n

√√√∑
i |yi j,n |

2til,nr−2
i j,n∑

i til,nr−1
i j,n

. (3.55)

The estimated source model ri j,n should be updated by (3.48) after each update
of til,n and vl j,n.

Alternatively, if we employ the partitioning function znk to cluster K bases
into N specific sources, which is ILRMA with (3.49), we can derive the auxiliary-
function-based update rules of znk , tik , and vk j by minimizing (3.46) in a similar
way to in [12, 167].

Here, I design an upper bound function of (3.46) as the auxiliary function.
The first term in (3.46) is a convex function for the variables. Applying
Jensen’s inequality to this term with an auxiliary variable αi j k,n ≥ 0 that satisfies



46
Chapter 3. Determined and Overdetermined Blind Source Separation Based

on Independent Low-Rank Matrix Analysis

∑
k αi j k,n = 1, we have

1∑
k znk tikvk j

≤
∑

k

α2
i j k,n

znk tikvk j
. (3.56)

Also, the third term in (3.46) is a concave function, and we can apply the tangent
line inequality to this term with an auxiliary variable βi j,n ≥ 0 as

log
∑

k

znk tikvk j ≤
1
βi j,n

(∑
k

znk tikvk j − βi j,n

)
+ log βi j,n. (3.57)

The equality of (3.56) and (3.57) holds if and only if the auxiliary variables are set
as follows:

αi j k,n =
znk tikvk j∑

k ′ znk ′tik ′vk ′ j
, (3.58)

βi j,n =
∑

k znk tikvk j . (3.59)

Using these upper bounds, we can design the auxiliary function of (3.46) as

LILRMA ≤ L
+
ILRMA =

∑
i, j

[∑
n,k

|yi j,n |
2α2

i j k,n

znk tikvk j
− 2 log | detWi |

+
1
βi j,n

(∑
k

znk tikvk j − βi j,n

)
+ log βi j,n

]
. (3.60)

The update rules for L+ILRMA with respect to each variable are determined by
setting the gradient to zero. From ∂L+ILRMA/∂znk = 0, we obtain

∑
i, j

[
−
|yi j,n |

2α2
i j k,n

z2
nk tikvk j

+
1
βi j,n

tikvk j

]
= 0. (3.61)

By transposing the first term in (3.61) to the right-hand side and multiplying
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both sides by z2
nk , we have

z2
nk

∑
i, j

1
βi j,n

tikvk j =
∑
i, j

|yi j,n |
2α2

i j k,n

tikvk j
. (3.62)

Finally, the MU rule of znk can be derived by substituting (3.58) and (3.59) into
(3.62) as follows:

znk ← znk

√√√∑
i, j |yi j,n |

2tikvk jr−2
i j,n∑

i, j tikvk jr−1
i j,n

, (3.63)

znk ←
znk∑
n′ zn′k

, (3.64)

where (3.64) is calculated to ensure
∑

n znk = 1. Similarly to (3.63), the update
rules of tik and vk j are obtained as

tik ← tik

√√√∑
j,n |yi j,n |

2znkvk jr−2
i j,n∑

j,n znkvk jr−1
i j,n

, (3.65)

vk j ← vk j

√√√∑
i,n |yi j,n |

2znk tikr−2
i j,n∑

i,n znk tikr−1
i j,n

, (3.66)

The estimated source model ri j,n should be updated by (3.49) after each update
of znk , tik , and vk j .

Thus, we can estimate all the variables that minimize (3.46) by iterating these
update rules. Note that a scale ambiguity exists betweenWi and ri j,n because
both of them can determine the scale of the separated signal yi j,n. Therefore,Wi

or ri j,n has a risk of diverging during the optimization. To avoid this problem,
the following normalization should be applied at each iteration:

wi,n ← wi,nλ
−1
n , (3.67)

yi j,n ← yi j,nλ
−1
n , (3.68)

ri j,n ← ri j,nλ
−2
n , (3.69)
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and

til,n ← til,nλ−2
n , (3.70)

should be applied for ILRMA without a partitioning function, or

tik ← tik
∑

n

znkλ
−2
n , (3.71)

znk ←
znkλ

−2
n∑

n′ zn′kλ
−2
n′
, (3.72)

should be applied for ILRMA with a partitioning function, where λn is an
arbitrary sourcewise normalization coefficient, such as the sourcewise average
power

λn =

√
1
I J

∑
i, j

|yi j,n |
2. (3.73)

These normalizations do not change the value of the cost function (3.46). The
scale of the separated signal yi j,n can be restored by applying the back-projection
technique (3.14) after the optimization.

3.3.4 Summary of Algorithm

The detailed algorithm of ILRMA is summarized in Algorithms 1 and 2, where
Pn ∈ R

I×J
≥0 is the power spectrogram whose entry is pi j,n, max(·, ·) returns a matrix

with the larger elements taken from two inputs in each entry, ε denotes the
machine epsilon, 1(size) denotes matrix of ones whose size is denoted as the
superscript, and P ∈ RI×J×N

≥0 and R ∈ RI×J×N
≥0 are third-order tensors whose entries

are pi j,n and ri j,n, respectively. To avoid division by zero, flooring with the
machine epsilon is performed in the update of the NMF variables.

General NMF-based source separation techniques directly use the decom-
posed components to reconstruct the estimated signals or to calculate a Wiener
filter. Since the NMF decomposition is a nonlinear approximation and the
additivity of power spectrograms are generally invalid, this separation mecha-
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nism often causes artificial distortion in the estimated signals and deteriorates
the sound quality. In ILRMA, unlike such NMF-based source separation,
the spectrogram decomposition is utilized only for the estimation of a latent
source model ri j .n, and the source separation is carried out by the linear spatial
demixing filter wi,n resulting in less distorted estimated signals. This issue will
be confirmed by a subjective comparison of ILRMA and the other methods in
Sect. 3.6.3.

Algorithm 1: Algorithm for ILRMA without partitioning function
1 Initialize Wi with identity matrix and Tn and Vn with nonnegative random values;
2 Calculate yi j = Wixi j for all i and j;
3 Calculate P::n = |Y::n |

.2 and R::n = TnVn for all n, respectively;
4 repeat
5 for n = 1 to N do

6 Tn ← max

(
Tn ◦

[
(P::n◦R.−2

::n )V
T
n

R.−1
::n VT

n

] . 1
2
, ε

)
;

7 R::n = TnVn;

8 Vn ← max

(
Vn ◦

[
TT
n (P::n◦R.−2

::n )
TT
nR.−1

::n

] . 1
2
, ε

)
;

9 R::n = TnVn;
10 for i = 1 to I do
11 Ui,n =

1
J

{
XH
i::

[
Xi:: ◦

(
R.−1
i:n 1(1×M)

) ]}
;

12 wi,n ← (WiUi,n)
−1en;

13 wi,n ← wi,n(w
H
i,nUi,nwi,n)

− 1
2 ;

14 end
15 end
16 Calculate yi j = Wixi j for all i and j;
17 Calculate P::n = |Y::n |

.2 for all n;
18 for n = 1 to N do
19 λn =

√
1
IJ

∑
i, j pi j,n;

20 for i = 1 to I do
21 wi,n ← wi,nλ

−1
n ;

22 end
23 P::n ← P::nλ

−2
n ;

24 R::n ← R::nλ
−2
n ;

25 Tn ← Tnλ
−2
n ;

26 end
27 until converge;
28 Calculate ŷi j,n = W−1

i

(
en ◦ yi j

)
for all i, j, and n;
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Algorithm 2: Algorithm for ILRMA with partitioning function
1 Initialize Wi with identity matrix, T and V with nonnegative random values, and Z with

random values in range [0, 1];
2 Z ← Z ◦

(
1(N×N )Z

) .−1;
3 Calculate yi j = Wixi j for all i and j;
4 Calculate P::n = |Y::n |

.2 and R::n =
[ (

1(I×1) zT
n

)
◦T

]
V for all n, respectively;

5 repeat
6 for n = 1 to N do

7 b(Z)n =
(
{[TT(P::n◦R.−2

::n )]◦V}1(J×1)

[(TTR.−1
::n )◦V]1(J×1)

) . 1
2
;

8 end
9 Z ← max

(
Z ◦ B(Z), ε

)
, where B(Z) = (b(Z)1 · · · b(Z)N )

T;
10 Z ← Z ◦

(
1(N×N )Z

) .−1;
11 Calculate R::n =

[ (
1(I×1) zT

n

)
◦T

]
V for all n;

12 for i = 1 to I do

13 b(T )i =

(
{[V(Pi::◦R.−2

i:: )]◦Z
T}1(N×1)

[(VR.−1
i:: )◦Z

T]1(N×1)

) . 1
2
;

14 end
15 T ← max

(
T ◦ B(T ), ε

)
, where B(T ) = (b(T )1 · · · b(T )I )

T;
16 Calculate R::n =

[ (
1(I×1) zT

n

)
◦T

]
V for all n;

17 for j = 1 to J do

18 b(V )j =

( {[
TT

(
P: j :◦R.−2

: j :

)]
◦ZT

}
1(N×1)[(

TTR.−1
: j :

)
◦ZT

]
1(N×1)

) . 1
2

;

19 end
20 V ← max

(
V ◦ B(V ), ε

)
, where B(V ) = (b(V )1 · · · b(V )J );

21 Calculate R::n =
[ (

1(I×1) zT
n

)
◦T

]
V for all n;

22 for n = 1 to N do
23 for i = 1 to I do
24 Ui,n =

1
J

{
XH
i::

[
Xi:: ◦

(
R.−1
i:n 1(1×M)

) ]}
;

25 wi,n ← (WiUi,n)
−1en;

26 wi,n ← wi,n(w
H
i,nUi,nwi,n)

− 1
2 ;

27 end
28 end
29 Calculate yi j = Wixi j for all i and j;
30 Calculate P::n = |Y::n |

.2 for all n;
31 for n = 1 to N do
32 λn =

√
1
IJ

∑
i, j pi j,n;

33 for i = 1 to I do
34 wi,n ← wi,nλ

−1
n ;

35 end
36 P::n ← P::nλ

−2
n ;

37 R::n ← R::nλ
−2
n ;

38 end
39 Calculate tik ← tik

∑
n znkλ−2

n for all i and k;
40 Calculate znk ← znk

λ−2
n∑

n′ zn′kλ
−2
n′

for all n and k;
41 until converge;
42 Calculate ŷi j,n = W−1

i

(
en ◦ yi j

)
for all i, j, and n;
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3.4 Relationship between IVA, MNMF, and ILRMA

In NMF-based source separation, the decomposed bases and activations must be
clustered in every source to achieve source separation. To solve this problem,
MNMF has been proposed [77, 78, 80, 6, 81, 82, 83, 84]. In particular, MNMF
methods [6, 81, 82, 84] treat convolutive mixtures similarly to FDICA, IVA, and
ILRMA and estimate a mixing system for the sources, which is utilized for the
clustering of bases. In these MNMFs, the spatial covariance [195, 196], which is
the covariance matrix of a zero-mean multivariate Gaussian distribution, has
been utilized to model the mixing conditions of the recording environment. In
this section, the relationships between time-varying Gaussian IVA, ILRMA, and
MNMF are revealed from the viewpoint of their assumed generative models.

3.4.1 Generative Model in MNMF and Spatial Covariance

In MNMF [6, 81, 82, 84] and its related methods [195, 196], the probability
distribution of multichannel STFT coefficients xi j is modeled by a circularly
symmetric multivariate complex Gaussian distribution with a time-frequency-
variant covariance matrix as follows:

p(xi j) =
1

πM det R(x)i j

exp
(
−xH

i j R
(x)
i j
−1
xi j

)
, (3.74)

where R(x)i j is called the spatial covariance [195, 196] of the observed multichannel
signal xi j , namely, R(x)i j = E[xi j x

H
i j ]. This spatial covariance can be decomposed

into the time-invariant source covariance R(s)i,n , the time-variant scalar variance
ri j,n, and the time-invariant noise covariance R(n)i that contributes to additional
noise ni j , as

R(x)i j =
∑

n

ri j,nR
(s)
i,n + R(n)i . (3.75)

The spatial covariance R(s)i,n represents the spatial position and the spatial spread
of the nth source. In particular, if the mixing system can be modeled by the
mixing matrix Ai as (2.7) with a noiseless assumption, the spatial covariance R(s)i,n
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is equal to the rank-1 matrix

R(s)i,n = ai,na
H
i,n. (3.76)

This mixing model is the called rank-1 spatial model, which is identical to the
assumption of an instantaneous mixture in the frequency domain. In contrast, if
the mixing system cannot be modeled by (2.7) owing to, for example, strong
reverberation in the recording environment, the rank of R(s)i,n increases so that it
becomes a full-rank spatial covariance [195, 196].

3.4.2 Existing MNMFModels

Existing MNMF models and their related works can be characterized in terms of
two features: models of spatial covariance R(x)i j and source spectrograms. Table 3.1
summarizes the existing methods. The models proposed in [195, 196] have
the most general representations. Several types of R(s)i,n have been investigated
including rank-1 and full-rank matrices. MNMF in [6] (hereafter referred to
as Ozerov’s MNMF) was the first method to model a power spectrogram ri j,n

using NMF decomposition. In this method, the sourcewise spatial covariance
R(s)i,n is constrained by a rank-1 matrix, and an additive noise component ni j is
also assumed. The update rules of the variables based on both EM and MU
algorithms have been derived. Ozerov’s MNMF was extended to a full-rank
spatial model in [81]. Also, a more flexible source model with a partitioning
function znk was introduced in [82]. As another optimization scheme, an MU
algorithm based on an auxiliary function technique was proposed in [84]
(hereafter referred to as Sawada’s MNMF). It also employs the full-rank R(s)i,n and
the flexible source model with znk and NMF variables. Note that all the existing
MNMFs estimate the sourcewise mixing system R(s)i,n to achieve separation via
multichannel Wiener filtering (MWF) [197], whereas ILRMA estimates the
demixing matrix Wi.
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Table 3.1: Models of mixing system, spatial covariance, power spectrogram, and
their optimization in each method

Literature Model of R(x)i j Spatial covariance Power spectrogram Optimization

Ozerov and
∑

n,l til,nvl j,nR
(s)
i,n +R

(n)
i Rank-1 matrix R(s)i,n and NMF w/o EM and MU for Ai,

Févotte [6] (xi j =Ai si j+ni j) diagonal matrix R(n)i
partitioning function R(n)i , Tn, and Vn

Arberet ∑
n,l til,nvl j,nR

(s)
i,n +R

(n)
i

Full-rank matrix R(s)i,n and NMF w/o EM for R(s)i,n ,
et al. [81] diagonal matrix R(n)i

partitioning function R(n)i , Tn, and Vn

Duong ∑
n ri j,nRi,n

Several types of R(s)i,n including ri j,n EM for R(s)i,net al. [196] rank-1 and full-rank matrices (w/o NMF)

Ozerov
∑

n R
(s)
i,n

∑
k znk tikvk j+R

(n)
i Rank-1 matrix R(s)i,n and NMF with EM and MU for Ai,

et al. [82] (xi j =Ai si j+ni j) diagonal matrix R(n)i
partitioning function R(n)i , Z , T , and V

Sawada ∑
n R
(s)
i,n

∑
k znk tikvk j Full-rank matrix R(s)i,n

NMF with MU for R(s)i,n ,
et al. [84] partitioning function Z , T , and V

Kitamura
∑

n R
(s)
i,n

∑
k znk tikvk j Rank-1 matrix R(s)i,n

NMF with IP forWi=A
−1
i and

et al. [194] (xi j =Ai si j) partitioning function MU for Z , T , and V

3.4.3 Equivalence between ILRMA and MNMF with Rank-1
Spatial Model

From (3.74), the likelihood function of the observed spatial covariance R(x) =

{R(x)i j |i = 1, · · · , I; j = 1, · · · , J} is given as

L(R(x)) =
∏
i, j

p(xi j |R
(x)
i j ) (3.77)

=
∏
i, j

1
πM det R(x)i j

exp
(
−xH

i j R
(x)
i j
−1
xi j

)
, (3.78)

and the negative log-likelihood function is

− logL(R(x)) =
∑
i, j

[
M log π + log det R(x)i j + xH

i j R
(x)
i j
−1
xi j

]
(3.79)

= const. +
∑
i, j

[
log det R(x)i j + tr

(
Xi jR

(x)
i j
−1)]

, (3.80)

where Xi j = xi j x
H
i j is an observed instantaneous covariance matrix. Similar

to ISNMF in Sect. 3.2.3, the ML estimation based on (3.80) is identical to the
multichannel IS divergence DMIS [84], which is known as Stein’s loss [198] in the
statistics field or the log-determinant divergence [199] in the machine learning
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field: ∑
i, j

DMIS(Xi j ‖R
(x)
i j ) =

∑
i, j

[
tr

(
Xi jR

(x)
i j
−1)
− log det Xi jR

(x)
i j
−1
− M

]
(3.81)

= const. +
∑
i, j

[
log det R(x)i j + tr

(
Xi jR

(x)
i j
−1)]

. (3.82)

In FDICA, IVA, and ILRMA, the mixing model (2.7) with a noiseless
assumption is used, which results in the rank-1 spatial model (3.76). On the basis
of this assumption, the covariance matrix R(x)i j can be rewritten using the mixing
matrix Ai as

R(x)i j =
∑

n

ri j,nai,na
H
i,n (3.83)

= AiDi j A
H
i , (3.84)

where

Di j =

©­­­­­­«
ri j,1 0 · · · 0

0 ri j,2
. . .

...
...

. . .
. . . 0

0 · · · 0 ri j,N

ª®®®®®®¬
. (3.85)
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If we substitute (3.84) into the cost function in MNMF (3.80), we obtain

− logL(R(x)) = const. +
∑
i, j

[
log det AiDi j A

H
i + tr

(
Xi j

(
AH

i

)−1
D−1

i j A−1
i

)]
(3.86)

= const. +
∑
i, j

[
log(det Ai)(det Di j)(det Ai)

H

+ tr
(
W−1

i yi j y
H
i j

(
W−1

i

)H
WH

i D−1
i j Wi

)]
(3.87)

= const. +
∑
i, j

[
log | det Ai |

2 + log det Di j + tr
(
WiW

−1
i yi j y

H
i j D
−1
i j

)]
(3.88)

=const. − 2J
∑

i

log | detWi | +
∑
i, j

[
log

∏
n

ri j,n + tr
(
yi j y

H
i j D
−1
i j

)]
(3.89)

= const. − 2J
∑

i

log | detWi | +
∑
i, j,n

[
log ri j,n +

|yi j,n |
2

ri j,n

]
, (3.90)

where we used xi j = W−1
i yi j andWi = A−1

i to transform the variables. Thus, it
is revealed that the cost function in MNMF with the rank-1 spatial model is
identical to (3.46), the cost function in ILRMA, because the same spatial and
source models are assumed.

Figure 3.7 shows the relationship between IVA, ILRMA, and MNMF. MNMF
with a rank-1 spatial model, which assumes an instantaneous mixture in the
frequency domain, is essentially equivalent to ILRMA, which is IVA with a
flexible source model using NMF decomposition. Therefore, ILRMA can be
considered as an intermediate model between IVA and MNMF in terms of the
model flexibility. From the IVA side, we introduced the source model using
NMF with bases to capture the specific spectral patterns, and from the MNMF
side, a rank-1 spatial model was introduced to transform the variable Ai intoWi

and to make the optimization more efficient.
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Figure 3.7: Relationship between IVA, ILRMA, and MNMF from viewpoint of
flexibility of spatial and source models.

3.5 ExperimentalAnalysis of ILRMAusingArtificial
Observation

In this section, I discuss the inherent difference between FDICA, Laplace IVA,
and ILRMA. In addition, I evaluate them via BSS experiments using artificial
sources and show that ILRMA possesses better flexibility than FDICA and
Laplace IVA for both the source and spatial models.

3.5.1 Difference between Assumption in Source Model

In IVA, as already discussed in Sects. 3.2.2 and 3.2.4, we generally introduce
the spherically symmetric multivariate distribution to ensure the higher-order
correlation between frequency bins, where the stationary distribution is assumed
in Laplace IVA and the time-varying variance is introduced in time-varying
Gaussian IVA. As shown in Fig. 3.6 (a), all the frequency components are assumed
to have the same activation (time-varying gain) in time-varying Gaussian IVA.
This simple and nonflexible source model can be interpreted as a specific NMF
that has only one frequency-uniform (flat) basis for each source. Therefore, the
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number of bases of a model spectrogram in time-varying Gaussian IVA always
becomes one.

On the other hand, conventional MNMF and proposed ILRMA independently
assume circularly symmetric complex Gaussian distribution for each time-
frequency slot [125] because their cost functions are based on IS divergence.
Therefore, the estimated variances ri j,n can explicitly express amodel spectrogram
via NMF decomposition with an arbitrary number of bases (see the spectrogram
in Fig. 3.6 (b)). For this reason, the source model in ILRMA is more flexible than
that in IVA. In addition, time-varying Gaussian IVA can be thought of as a
special case of ILRMA. If the number of bases for each source is set to one and
the basis is fixed to a flat spectrum, both methods become essentially equivalent.

For conventional FDICA, its source model depends on how the permutation
problem is solved. The permutation solver utilizing the correlation between
frequency bins [179] is an essentially equivalent approach to IVA. However, the
permutation solver based on DOA of each source [178] is a different approach.
Hereafter, I refer to the combinedmethod of FDICA andDOA-based permutation
solver as FDICA+DOA. FDICA+DOA uses the estimated steering vectors
(estimated spatial model), and there is no explicit source model except for
non-Gaussianity in the time series for each frequency bin.

3.5.2 Difference between Assumption in Spatial Model

In IVA and ILRMA, there is no explicit assumption in the spatial model (mixing
system) except for the rank-1 spatial model (3.76). Both methods only use the
statistical independence between source models (model spectrograms) and the
observed multichannel mixtures to estimate the demixing matrix.

In contrast, FDICA+DOA directly uses the difference between the estimated
spatial conditions for each source to solve the permutation problem. Therefore,
the separation performance of FDICA+DOA is sensitive to the spatial setup of
the sources; if the positions of the sources become close or the reverberation
becomes strong, the error of the permutation solver may increase. In summary,
FDICA+DOA is severely affected by the spatial conditions rather than source
modeling, whereas IVA and ILRMA are not.
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Figure 3.8: Artificial source that consists of R bases.

3.5.3 Experimental Validation

I validate the difference between both the source and spatial models among IVA,
FDICA+DOA, and ILRMA. In this validation, for simplicity, the numbers of
sources and microphones are set to two, namely, N = M = 2.

Design of Artificial Spectrograms with R Bases

From the difference between the source models of IVA and ILRMA, we can
expect that the number of bases (rank) in the power spectrogram will affect the
separation performance for IVA. If the power spectrogram of each source consists
of only one basis, both IVA and ILRMA can separate the sources with high
accuracy. However, if the sources have more complicated power spectrograms,
the source model in IVA cannot represent them in principle, and the separation
performance may decrease.

To investigate this issue, in this experiment, I produce artificial sources whose
power spectrograms can be represented by R bases. Figure 3.8 shows the power
spectrogram that I produced. To simulate a nonnegative sparse spectrogram, I
generate nonnegative random values fir and gr j that obey independent and
identically distributed (i.i.d.) gamma distributions, where r = 1, · · · , R is
the integral index of the basis in matrices F and G. The power spectrogram
is a product of F and G and its size is I × J. The gamma distribution can be
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Table 3.2: Estimated values of shape parameter κ so that kurtosis of FG is
adjusted to 50 for each R

Number of bases R Shape parameter κ
1 0.83809
2 0.54962
3 0.43450
4 0.36929
5 0.32617
6 0.29504
7 0.27124
8 0.25231

represented as

Gamma(χ |κ, θ) = χκ−1 1
Γ(κ)θκ

exp
(
−
χ

θ

)
, (3.91)

where χ is a random variable, and κ and θ are shape and scale parameters,
respectively. After producing the power spectrogram FG, I add random phases
that obey a uniform distribution in the range [0, 2π] to FG, and the produced
complex spectrogram (FG with random phases) is used as an artificial source
whose power spectrogram has R bases. Therefore, in this procedure, I simulate
the variances of zero-mean spherical complex Gaussian distributions with an
outer product of variables that obey i.i.d. gamma distributions and their linear
combination.

In this artificial source, it is important to set κ to an appropriate value. For
example, when κ is set to a constant value regardless of R, the random values
in the power spectrogram FG become close to a Gaussian distribution.This
is because the kurtosis of the element

∑R
r=1 firgr j in FG converges to three by

the central limit theorem when R increases. For this reason, the separation
accuracy of ICA-based methods decreases as R increases. To avoid this influence,
I adjust the shape parameter κ for each value of R so that the kurtosis of FG

is always the same value regardless of R. Such a κ can be derived using the
moment-cumulant transform [200] (see Appendix A). The following equation
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Figure 3.9: Artificial DOA with Gaussian distributions.

gives the shape parameter κ used to adjust the kurtosis of FG:

ζ(κ,R)

ξ(κ,R)
− kurt = 0, (3.92)

where kurt is the intended value for the kurtosis of FG and

ζ(κ,R) = 84κ3 + 174κ2 + 132κ + 36

+ R
(
52κ4 + 60κ3 + 19κ2

)
+ R2

(
12κ5 + 6κ4

)
+ R3κ6, (3.93)

ξ(κ,R) = R
(
4κ4 + 4κ3 + κ2

)
+ R2

(
4κ5 + 2κ4

)
+ R3κ6. (3.94)

Since no closed-form solution exists that satisfies (3.92), I calculate the optimal κ
by a greedy search. Table 3.2 shows the estimated shape parameter values when
kurt = 50. I experimentally confirmed that the kurtosis of the produced power
spectrogram FG is always controlled to be approximately 50 using these shape
parameters.

Design of Artificial Mixing Systems

For a mixing system, I designed an artificial DOA that consists of N = 2 Gaussian
distributions, as shown in Fig. 3.9, where µn and σn are the mean value (position
of the source) and standard deviation of the nth source, respectively. This
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Figure 3.10: Separation results of (a) first source and (b) second source for
various numbers of bases.

modeling mimics an actual acoustical phenomenon in which the DOAs of
wavefronts in different frequencies i are randomly distributed owing to the room
reverberation effect. I produced steering vectors ai,n that obey the Gaussian
distributions in Fig. 3.9 and prepared an artificial mixing matrix Ai. Finally, I
produced an artificial observed signal xi j with artificial sources and an artificial
mixing system using (2.7).

Experiment on Variational Artificial Spectrogram

In this experiment, I assume the following conditions: I = J = 257, kurt = 50,
θ = 1, µ1 = 5π/12, µ2 = 7π/12, σ2

1 = σ
2
2 = 0.05, and the interelement spacing

of microphones is set to 5.66 cm. Figure 3.10 shows the improvement of the
signal-to-distortion ratio (SDR) [201] for various numbers of bases R, where
SDR indicates the total separation performance and the improvement in the
SDR is the increment from the SDR value of the observed signal. For ILRMA, I
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use a simple formulation without the partitioning function. Also, I evaluate
three patterns, namely, the case of L = 1 (ILRMA with only one basis), the case
of a suitable number of spectral bases L = R (ILRMAwith R bases), and the
case of a supervised source model by setting T = F and V = G (ILRMA with R
supervised bases). From Fig. 3.10, the separation scores of Laplace IVA and
ILRMA with only one basis decrease when the number of bases of each source,
R, increases because they cannot capture the exact power spectrograms. In
contrast, ILRMA with R bases can maintain high SDR values because the power
spectrogram of each source can be represented by a model spectrogram using R
spectral bases in T . This clearly demonstrates the flexibility of the source model
in ILRMA.

Experiment on Variational Artificial Mixing Systems

From the difference between the spatial models in FDICA+DOA and ILRMA,
we can expect that the mixing system (spatial conditions of each source) will
affect the separation performance for FDICA+DOA. If the source positions
are close or the variance of the DOAs is large, a large error of DOA clustering
occurs in FDICA+DOA, resulting in marked degradation of the separation.
However, since IVA and ILRMA do not use the explicit properties of the mixing
condition (spatial model), we can expect that their separation performance
will not strongly depend on the source positions or the variance of the DOAs.
To investigate this issue, in this experiment, I produce observed signals with
various mixing conditions and evaluate the separation performance. I use the
artificial sources described in Sect. 3.5.3, where the power spectrograms of these
sources are generated with kurt = 50 and R = 1. The mixing system is produced
by the artificial DOA shown in Fig. 3.9 with various µ1, µ2, σ2

1 , and σ
2
2 . Note that

the experiment in which σ2
1 and σ2

2 are changed does not simulate a change
in the reverberation time. It only controls the variance of the DOAs over the
frequencies, and the length of the impulse response does not change. Therefore,
even when using larger σ2

1 and σ2
2 , the rank-1 spatial model is always valid in

this simulation. For ILRMA, the number of bases L is set to one, which is equal
to R. The other conditions are the same as those in Sect. 3.5.3.



3.5 Experimental Analysis of ILRMA using Artificial Observation 63

Angle between sources
( ) [rad]

(b)

Angle between sources
( ) [rad]

(a)

35

30

25

20

15

10

5

0

S
D

R
 im

pr
ov

em
en

t [
dB

]

0.60.50.40.30.20.10.0

35

30

25

20

15

10

5

0
S

D
R

 im
pr

ov
em

en
t [

dB
]

0.60.50.40.30.20.10.0

Laplace IVA FDICA+DOA ILRMA
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various angles.

35

30

25

20

15

10

5

0

S
D

R
 im

pr
ov

em
en

t [
dB

]

0.200.150.100.050.00

35

30

25

20

15

10

5

0

S
D

R
 im

pr
ov

em
en

t [
dB

]

0.200.150.100.050.00

(a)
Variance of sources ( )

(b)
Variance of sources ( )

Laplace IVA FDICA+DOA ILRMA

Figure 3.12: Separation results of (a) first source and (b) second source for
various variances.



64
Chapter 3. Determined and Overdetermined Blind Source Separation Based

on Independent Low-Rank Matrix Analysis

Figure 3.11 shows the SDR results for various positions of the sources (µ1 and
µ2), where the horizontal axis indicates the angle between the two sources,
µ2 − µ1, and the variances are fixed to σ2

1 = σ
2
2 = 0.05. Also, Fig. 3.12 shows the

SDR results for various variances (σ2
1 and σ2

2 ), where σ2
1 and σ2

2 are always set to
the same value and the positions of the sources are fixed to µ1 = 5π/12 and
µ2 = 7π/12. From these results, we can confirm that the separation performance
of FDICA+DOA is sensitive to the mixing system. In particular, when the
source positions become close (around 0.0 on the horizontal axis in Fig. 3.11)
or the variance of the DOAs. is large (around 0.20 on the horizontal axis in
Fig. 3.12), the permutation solver using the DOA cannot cluster the sources
correctly, resulting in large permutation errors. In contrast, Laplace IVA and
ILRMA achieve good performance regardless of the mixing system because
these methods do not have explicit spatial constraints. This shows the flexibility
of the spatial model in ILRMA.

3.6 Comparisonof Speech andMusic SeparationPer-
formance

In this section, I confirm the efficacy of ILRMA for determined BSS task by
comparing the separation performance of many techniques.

3.6.1 Datasets

In this experiment, I investigated two cases: speech signal and music signal
cases. In the speech signal case, I used live recorded mixture signals obtained
from an underdetermined BSS task in SiSEC2011 [122]. This dataset includes 12
mixture signals (dev1 and dev2 datasets) with female and male speech, where the
reverberation time is 130 ms/250 ms and the microphone spacing is 1 m/5 cm.
Details of the other conditions for this dataset can be found in [122]. Note that
since this dataset is for underdetermined BSS, three sources (N = 3) are provided
as stereo recordings (M = 2). In this experiment, I used only the first and second
speech sources to make the task determined (M = N = 2). In the music signal
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Figure 3.13: Recording conditions of impulse responses (a) E2A and (b) JR2 for
two-source case.

Table 3.3: Music sources for two-source case

ID Song name Source (1/2)
1 bearlin-roads acoustic_guit_main/vocals
2 another_dreamer-the_ones_we_love guitar/vocals
3 fort_minor-remember_the_name violins_synth/vocals
4 ultimate_nz_tour guitar/synth

case, the observed signals were produced by convoluting the impulse response
E2A or JR2, which was obtained from the RWCP database [202], with each
source. Figure 3.13 shows the recording conditions of impulse responses E2A
and JR2. As the music sources, I used professionally produced music obtained
from a music separation task in SiSEC2011. The titles of the music and the
instruments used are shown in Table 3.3.

3.6.2 Experimental Analysis of Optimal Number of Bases

In this subsection, I give an experimental analysis of the optimal number of
bases in ILRMA. Since NMF decomposition is more suitable for music than
speech because of the stable pitch of instruments, we expect that the optimal
number of bases will be different between them. For this reason, I evaluated the
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Table 3.4: Experimental conditions

Sampling frequency 16 kHz

Window length in STFT 256 ms in speech signal case and
512 ms in music signal case

Window function Hamming window
Window shift length 128 ms in both speech and music signal cases

Initialization Wi: identity matrix
NMF variables: uniform random values [0, 1]

Number of iterations 200

separation performance of ILRMA without a partitioning function using various
numbers of bases for each source, where this method models all the sources
with the same fixed number of bases L. The experimental conditions used are
shown in Table 3.4. As the evaluation score, I used the improvement of SDR.

Figures 3.14 and 3.15 show the average SDR improvements and their
deviations in 10 trials with different various pseudorandom seeds, where the
speech signal (Fig. 3.14) is a female speech from the dev1 dataset with 130 ms
reverberation time and 1 m microphone spacing, and the music signal (Fig. 3.15)
is song ID4 with impulse response E2A. From these results, we confirm that
ILRMA cannot achieve a good separation performance for speech signals when
the number of bases is large. This is due to the structural complexity of the
speech spectrogram. Figure 3.16 shows cumulative singular values of each
source spectrogram in the speech and music signals. The speech sources require
more than 50 bases to represent the spectrogram while the music sources are
saturated with 25 bases. Because of the time-varying pitch, it is difficult to
capture speech spectrograms using NMF decomposition. If ILRMA fails to
capture the correct spectrogram of each speech in the optimization, the demixing
matrix will be trapped at a poor solution (local minimum). On the other hand,
owing to the low rank of music spectrograms, ILRMA gives a better performance
for music separation even if the number of bases increases.
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Figure 3.14: Average SDR improvements for female speech (dev1) with 1 m
microphone spacing and 130 ms reverberation time: (a) first speaker and (b)
second speaker.
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Figure 3.16: Cumulative singular values of each source spectrogram in dev1
female speech and song ID4 music, where all sources are truncated to be the
same signal length.

3.6.3 Comparison of Separation Performance

Experimental Conditions

I next compare the separation performance of eight methods, namely, directional
clustering (DC) [60], Laplace IVA, Ozerov’s MNMF, Ozerov’s MNMF with random
initialization, Sawada’s MNMF, ILRMA w/o partitioning function, ILRMA with
partitioning function, and Sawada’s MNMF initialized by ILRMA. DC is a simple
separation technique, which clusters all the STFT coefficients into specific sources
using both powers and phases. In this experiment, I use k-means clustering
in directional clustering, which corresponds to a double-disjoint assumption,
namely, we assume that each time-frequency slot has only one source component.
In Ozerov’s MNMF, I used the experimental conditions described in [6], as
shown in Table 3.5, where the mixing matrices and the source models are
initialized by estimation using Soft-LOST [203] with the permutation solver [181].
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Table 3.5: Experimental conditions used in Ozerov’s MNMF

Sampling frequency 16 kHz
Window length in STFT 128 ms

Window function Hamming window
Window shift length 64 ms

Number of bases 10 bases for each speech source
and 4 bases for each music source

Initialization of Mixing matrices estimated by Soft-
mixing matrices LOST [203] and permutation solver [181]

Initialization of Pretrained bases and activations

source models using simple NMF based on

(NMF variables) KL divergence with sources
estimated by Soft-LOST and [181]

Annealing for Annealing with noise
EM algorithm injection proposed in [6]

Number of iterations 500

Also, Ozerov’s MNMF with random initialization has the same conditions as
Ozerov’s MNMF except for the initialization, namely, the mixing matrices and
the source models are initialized by the identity matrix and the uniform random
values [0, 1], respectively. In the other methods, the experimental conditions
shown in Table 3.4 were used. In ILRMA with partitioning function, I only set
the total number of bases, K, and the sources are flexibly modeled with the
optimal number of bases using the partitioning function Z . Sawada’s MNMF
initialized by ILRMA has the same algorithm as Sawada’s MNMF, but the initial
values of the spatial covariance matrix R(s)i,n are given by (3.76), where the steering
vector ai,n is calculated from the inverse of the demixing matrix Wi estimated by
ILRMA w/o partitioning function.

On the basis of the results in Sect. 3.6.2, I set the number of bases of each
source to L = 2 for the speech signals and L = 30 for the music signals in ILRMA
w/o partitioning function. In ILRMA with partitioning function and Sawada’s
MNMF, I set the total number of bases to K = 2 × N for the speech signals and
K = 30 × N for the music signals. The number of bases used in Ozerov’s MNMF
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is shown in Table 3.5.

Results

Figures 3.17 and 3.18 respectively show examples of results for speech signals
given by the average SDR improvements and their deviations in 10 trials with
different pseudorandom seeds. Also, Figs. 3.19 and 3.20 show examples of
results for music signals. The total average scores are shown in Tables 3.6 and 3.7.
From these results, we confirm that DC cannot separate the sources because
of the imperfect double-disjoint assumption and the deviation of the DOAs
in reverberant environments. Also, Laplace IVA cannot achieve satisfactory
separation because the source model in Laplace IVA is not flexible as described
in Sect. 3.5. Ozerov’s MNMF outperforms Laplace IVA for the music signals,
but the separation performance for speech signals is inferior to that of Laplace
IVA. In addition, Ozerov’s MNMF with random initialization cannot solve
the BSS problem. This method must be initialized by other methods to find a
good solution. The results of Sawada’s MNMF have large error bars, namely,
this method is also sensitive to initial values. However, for the music signals,
Sawada’s MNMF gives better performance than Laplace IVA and Ozerov’s
MNMF. ILRMA-based methods achieve a high and stable performance. For the
speech signals, ILRMA w/o partitioning function is preferable to ILRMA with
partitioning function. This might be due to the sensitivity of the performance to
the number of bases, as discussed in Sect. 3.6.2. In contrast, for the music signals,
ILRMAwith partitioning function exhibits slightly higher performance than
ILRMA w/o partitioning function. This improvement is achieved by modeling
the sources with the optimal number of bases using the partitioning function znk .
Figure 3.21 shows an example of the convergence of the partitioning function z1k

from k = 1 to k = K in the music signal case. These values indicate whether the
kth basis contributes to only source one (z1k = 1) or only source two (z1k = 0).
We can confirm that almost partitioning functions converge to one or zero, but
several ones converge to intermediate values. This is because similar or the same
spectral patterns appear in both two sources. Thanks to the partitioning function,
all the sources can effectively be modeled with the optimal number of bases.
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Figure 3.17: Average SDR improvements for female speech (dev1) with 1 m
microphone spacing, where reverberation time is (a) 130 ms and (b) 250 ms.
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Figure 3.18: Average SDR improvements for male speech (dev1) with 1 m
microphone spacing, where reverberation time is (a) 130 ms and (b) 250 ms.
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Figure 3.19: Average SDR improvements for music signal song ID3 with impulse
response (a) E2A and (b) JR2.
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Figure 3.20: Average SDR improvements for music signal song ID4 with impulse
response (a) E2A and (b) JR2.
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Table 3.6: Averaged SDR improvements over various speech signals and sources
with same recording conditions in two-source case

Conditions Laplace Ozerov’s Ozerov’s MNMF Sawada’s ILRMA w/o ILRMA with Sawada’s MNMF
(rev. time and DC IVA MNMF with random MNMF partitioning partitioning initialized
mic. spacing) initialization function function by ILRMA
130 ms & 1 m 2.59 2.98 1.35 -2.11 0.68 11.91 4.88 6.36
130 ms & 5 cm -1.51 2.86 2.13 -0.22 1.13 8.97 3.48 5.60
250 ms & 1 m 0.14 2.03 0.49 -2.02 0.48 7.34 2.09 4.19
250 ms & 5 cm -1.56 2.43 0.91 -1.06 0.47 6.43 1.91 3.95

Table 3.7: Averaged SDR improvements over various music signals and sources
with same impulse response in two-source case

Impulse Laplace Ozerov’s Ozerov’s MNMF Sawada’s ILRMA w/o ILRMA with Sawada’s MNMF

response DC IVA MNMF with random MNMF partitioning partitioning initialized
initialization function function by ILRMA

E2A -0.73 5.72 5.73 -2.70 10.32 12.29 12.29 14.41
JR2 -1.18 1.77 2.37 0.75 6.11 6.62 7.40 9.06
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Figure 3.21: Convergence of z1k from k = 1 to k = K in music signal case.

The deviations of the ILRMA-based methods are smaller than those of
Ozerov’s and Sawada’s MNMFs, which is particularly evident in ILRMA w/o
partitioning function. This is because the optimization of the demixing matrix
using the IVA update rules results in a stable separation performance. In fact, I
experimentally confirmed that the initialization using Soft-LOST [203] and
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the permutation solver [181], which was employed in Ozerov’s MNMF, did
not improve the separation performance of ILRMA w/o partitioning function.
This fact means that ILRMA is robust against the initial values. For music
signals with impulse response JR2 (Figs. 3.19 (b) and 3.20 (b)), the SDRs of the
ILRMA-based methods are markedly degraded compared with those with
impulse response E2A because the reverberation time is longer than impulse
response E2A and is close to the length of the window function in the STFT.
Even if Sawada’s MNMF has the potential to model such a mixing system by
employing a full-rank spatial model, it is a very difficult problem to find the
optimal R(s)i,n . However, Sawada’s MNMF initialized by ILRMA can achieve high
and very stable separation performance even with impulse response JR2. This
means that the demixing matrix estimated by ILRMA can be a good initial value
of the spatial model R(s)i,n in order to find the full-rank spatial covariance.

Figure 3.22 shows an example of the SDR convergence for each method
in music signal case. Both Laplace IVA and the proposed methods show
much faster convergence than Sawada’s MNMF. Also, the numbers of required
iterations in Sawada’s MNMF is greatly reduced by the initialization of the
rank-1 spatial covariance. This result shows the difficulty of optimizing the
full-rank spatial covariance R(s)i,n .

Figure 3.23 shows a result of a subjective evaluation, where I presented 48
pairs of separated speech and 48 pairs of separated music signals in random
order to 14 examinees, who selected which signal they preferred from the
viewpoint of the total quality of the separated sounds. Also, Fig. 3.24 shows a
probability of selection regarding a difference between two subjective scores. For
example, the difference of subjective scores of Laplace IVA and Ozerov’s MNMF
for speech signals is around 0.9, and it means that Laplace IVA is preferably
selected with a 81% probability when it is compared with Ozerov’s MNMF. We
can confirm that Laplace IVA is better than MNMF methods for the speech
signals. In contrast, Sawada’s MNMF achieves a better result for music signals
owing to the suitable representation using NMF. ILRMA is the most preferable
method for the high-quality separation of both speech and music signals.
Similarly to FDICA and Laplace IVA, ILRMA employs the demixing matrixWi

for the separation, which is essentially equivalent to the spatial linear filter [47]
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Figure 3.22: SDR convergence for music signal song ID4 with impulse response
E2A: (a) guitar and (b) synth.
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Figure 3.23: Results of subjective scores obtained by Thurstone pairwise
comparison method, where 48 pairs of separated speech and 48 pairs of
separated music signals are presented in random order to 14 examinees, who
selected which signal they preferred from the viewpoint of total quality of
separated sound. Scores show relative tendency of selection.

in beamforming techniques [204, 205], and it is more difficult for such linear
filtering to generate artificial noise than for time-frequency mask separation
techniques including MNMF with MWF. Thus, the quality of separated sources
via ILRMA from the viewpoint of human perception might be better than that
via MNMF.

3.6.4 Experiments on Three-Source Case with Music Signals

I also conducted an experiment involving three sources and three microphones
(M = N = 3) with music signals. Similarly to the music dataset described in
Sect. 3.6.1, I produced the observed signals using the same songs and the three
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Figure 3.24: Probability of selection regarding difference between two subjective
scores.

Table 3.8: Music sources for three-source case

ID Song name Source (1/2/3)
1 bearlin-roads acoustic_guit_main/bass/vocals
2 another_dreamer-the_ones_we_love drums/guitar/vocals
3 fort_minor-remember_the_name drums/violins_synth/vocals
4 ultimate_nz_tour guitar/synth/vocals

instruments shown in Table 3.8 with the impulse responses shown in Fig. 3.25.
The experimental conditions are those in Table 3.4, where I here omit the results
of DC, Ozerov’s MNMF, and Ozerov’s MNMF with random initialization.

Figure 3.26 shows examples of results, and Table 3.9 shows the total average
scores in the three-source case. Similarly to the previous results, the proposed
method achieves better and more stable performance than Sawada’s MNMF,
and the spatial model estimated by ILRMA provides an efficient initialization
for Sawada’s MNMF. Table 3.10 shows the actual computational time for
each method in the three-source case, where the calculations were performed
using MATLAB 8.3 (64-bit) with an Intel Core i7-4790 (3.60 GHz) CPU. The
computational times of ILRMA-based methods are less than twice that of
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Figure 3.25: Recording conditions of impulse responses (a) E2A and (b) JR2 for
three-source case.

Table 3.9: Averaged SDR improvements over various music signals and sources
with same impulse response in three-source case

Impulse Laplace Sawada’s ILRMA w/o ILRMA with Sawada’s MNMF

response IVA MNMF partitioning partitioning initialized
function function by ILRMA

E2A 3.86 7.77 8.03 6.18 9.44
JR2 2.81 4.44 5.03 4.11 7.00

Laplace IVA. Sawada’s MNMF requires a longer computational time because the
eigenvalue decomposition of a 2M × 2M matrix is required for each update
iteration of R(s)i,n . From these results, ILRMA is advantageous in terms of the
convergence speed and computational cost while maintaining comparable
separation performance with Sawada’s MNMF.

3.6.5 Experimental Analysis of Optimal Window Length

Since ILRMA estimates low-rank source model using NMF decomposition, a
rank of an observed spectrogram directly affects the separation performance. As
already shown in Sect. 3.6.2, the inherent time-frequency structure of each source
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Figure 3.26: Average SDR improvements formusic signal song ID4 in three-source
case with impulse response (a) E2A and (b) JR2.
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Table 3.10: Computational times (s) for separation of song ID1 with impulse
response E2A in three-source case

Laplace Sawada’s ILRMA w/o ILRMA with
IVA MNMF partitioning function partitioning function
91.6 4498.4 121.0 173.4

Table 3.11: Experimental conditions used in analysis of optimal window length

Sampling frequency 16 kHz
Window length in STFT 32/64/128/256/512/768/1024/1280/1536 ms

Window function Hamming window
Window shift length 1/4 of window length

Initialization Wi: identity matrix
NMF variables: uniform random values [0, 1]

Number of bases L = 5/10/20/30/40/50 and K = 2L
Number of iterations 200

(e.g., speech or music) must be suitable for ILRMA to achieve a good separation,
but the rank of the spectrogram also depends on a length of analysis window
used in STFT. In this subsection, I compare separation performance of ILRMA
with various window length and experimentally analyze its optimal condition.

Conditions

Similar to Sect. 3.6.1, I used the music dataset shown in Table 3.3, and the music
sources were convolved with the impulse responses JR2 (Fig. 3.13 (b)). The other
conditions are shown in Table 3.11. I compared nine lengths of analysis window,
and its shift length was always set to a quarter of the window length. Also, the
number of bases (L for ILRMA w/o partitioning functin and K for ILRMA with
partitioning function) was set to six patterns. In this experiment, only Laplace
IVA, ILRMA w/o partitioning function, and ILRMA with partitioning function
were compared.
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Results

Figures 3.27–3.30 show the separation results with various window lengths and
number of NMF bases, where the SDR improvements are averaged for two
sources and 10 trials using various pseudorandom seeds. From these results, we
can confirm that the separation performance strongly depends on the window
length in STFT rather than the number of NMF bases L or K. In particular,
in Fig. 3.27, the long analysis window that exceeds 1.2 s provides the highest
performance even though the improvements of Laplace IVA drop when the
window length exceeds 1.0 s. In conventional FDICA, the separation fails if
we use a too long window in STFT. This is because the sequential signals in
each frequency bin close to a sinusoidal wave when the window length is too
long, and their independence assumption between sources collapses in each
frequency band, meaning that there is a fundamental limitation for FDICA [206].
Therefore, the separation performance has a trade-off based on the length of the
analysis window in terms of the assumptions of linear time-invariant mixing and
the independence of sources. In ILRMA, this trade-off might be solved owing to
take the source model ri j,n into account for the estimation ofWi if the source
model ri j,n could accurately capture the time-frequency structure. However, in
the other results (Figs. 3.28–3.30), the optimal window length is around 0.5 s,
and longer windows do not give a better separation.

Figure. 3.31 shows a number of bases in the power spectrogram of each
source when its cumulative singular value reaches 80% or 90%, namely, an
approximative rank of each source spectrogram. The songs ID1 and ID4 relatively
have a low-rank power spectrograms. Indeed, the separation performance of
these observations is better than those of the others (see Figs. 3.27 and 3.30).
Thus, when we apply ILRMA to the observed signals that do not have a low-rank
time-frequency structure (e.g., vocal or speech signal), the number of NMF
bases should be set to a smaller value as shown in Figs. 3.15 and 3.28 (a) and a
partitioning function should be omitted. For the signals that have low-rank
spectrograms, we can increase the number of NMF bases to achieve more
accurate separation.



84
Chapter 3. Determined and Overdetermined Blind Source Separation Based

on Independent Low-Rank Matrix Analysis

16

14

12

10

8

6

4

2

0

-2

-4

S
D

R
 i
m

p
ro

v
e

m
e

n
t 

[d
B

]

1.61.41.21.00.80.60.40.20.0

Window length in STFT [s]

16

14

12

10

8

6

4

2

0

-2

-4

S
D

R
 i
m

p
ro

v
e

m
e

n
t 

[d
B

]

1.61.41.21.00.80.60.40.20.0

Window length in STFT [s]

Laplace IVA ILRMA w/o partitioning function ILRMA with partitioning function

(a) (b) (c)

(d) (e) (f)

16

14

12

10

8

6

4

2

0

-2

-4

S
D

R
 i
m

p
ro

v
e

m
e

n
t 

[d
B

]

1.61.41.21.00.80.60.40.20.0

Window length in STFT [s]

16

14

12

10

8

6

4

2

0

-2

-4

S
D

R
 i
m

p
ro

v
e

m
e

n
t 

[d
B

]

1.61.41.21.00.80.60.40.20.0

Window length in STFT [s]

16

14

12

10

8

6

4

2

0

-2

-4

S
D

R
 i
m

p
ro

v
e

m
e

n
t 

[d
B

]

1.61.41.21.00.80.60.40.20.0

Window length in STFT [s]

16

14

12

10

8

6

4

2

0

-2

-4

S
D

R
 i
m

p
ro

v
e

m
e

n
t 

[d
B

]

1.61.41.21.00.80.60.40.20.0

Window length in STFT [s]

Figure 3.27: Averaged SDR improvements averaged for music signal song ID1
with impulse response JR2 (reverberation time is 470 ms): (a) L = 5 and K = 10,
(b) L = 10 and K = 20, (c) L = 20 and K = 40, (d) L = 30 and K = 60, (e) L = 40
and K = 80, and (f) L = 50 and K = 100. Scores are averaged for two sources and
10 trials with different pseudorandom seeds.
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Figure 3.28: Averaged SDR improvements averaged for music signal song ID2
with impulse response JR2 (reverberation time is 470 ms): (a) L = 5 and K = 10,
(b) L = 10 and K = 20, (c) L = 20 and K = 40, (d) L = 30 and K = 60, (e) L = 40
and K = 80, and (f) L = 50 and K = 100. Scores are averaged for two sources and
10 trials with different pseudorandom seeds.
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Figure 3.29: Averaged SDR improvements averaged for music signal song ID3
with impulse response JR2 (reverberation time is 470 ms): (a) L = 5 and K = 10,
(b) L = 10 and K = 20, (c) L = 20 and K = 40, (d) L = 30 and K = 60, (e) L = 40
and K = 80, and (f) L = 50 and K = 100. Scores are averaged for two sources and
10 trials with different pseudorandom seeds.
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Figure 3.30: Averaged SDR improvements averaged for music signal song ID4
with impulse response JR2 (reverberation time is 470 ms): (a) L = 5 and K = 10,
(b) L = 10 and K = 20, (c) L = 20 and K = 40, (d) L = 30 and K = 60, (e) L = 40
and K = 80, and (f) L = 50 and K = 100. Scores are averaged for two sources and
10 trials with different pseudorandom seeds.
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Source 1 (cumulative singular value =80%) Source 1 (cumulative singular value =90%)

Source 2 (cumulative singular value =80%) Source 2 (cumulative singular value =90%)

Figure 3.31: Number of bases in power spectrogram of each source when its
cumulative singular value reaches 80% or 90%: (a) song ID1, guitar (source 1)
and vocals (source 2), (b) song ID2, guitar (source 1) and vocals (source 2), (c)
song ID3, violins synth. (source 1) and vocals (source 2), and (d) song ID4, guitar
(source 1) and synth. (source 2).
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3.7 Extension of ILRMAforOverdetermined andRe-
verberant Recording

In the discussions so far, the linear instantaneous mixture in frequency domain,
(2.7), is always assumed to be valid. Figure 3.32 (a) shows the mixing system
corresponding to (2.7), which is also called linear time-invariant mixing. In
this mixing system, all the time frames are independent of other time frames,
meaning that they do not affect each other. However, for the case of reverberant
recording, reverberant components can leak from the previous frame as shown
in Fig. 3.32 (b), and the mixed signal xi j cannot be represented using only Ai.
Therefore, the assumption of linear time-invariant mixing holds only when the
lengths of all impulse responses between the sources and microphones are
sufficiently shorter than the length of the analysis window in STFT.

For this reason, in this section, I propose an extended algorithm of ILRMA
particularly for overdetermined (M > N) and reverberant recordings. Since
conventional ICA-based methods and ILRMA exploit the assumption of
linear time-invariant mixing, the separation performance degrades when this
assumption does not hold. The proposed new approach for overdetermined BSS
enables us to achieve good separation performance even for reverberant signals.
The algorithm utilizes extra observations (channels) to estimate the reverberant
components of each source [207].

3.7.1 PCA for Overdetermined BSS

When M > N , in a typical separation method using FDICA or IVA, PCA is
applied in advance and the dimension of xi j is reduced so that M = N . This
preprocessing is performedwith the expectation that the reverberant components
in the observed signal are eliminated by the dimensionality reduction. Therefore,
PCA is applied to make the assumption of linear time-invariant mixing (2.7) valid
even in a reverberant environment. However, if the purpose of source separation
is to obtain each source image including the reverberation, PCA degrades the
separation performance by removing the reverberation components. Moreover,
if the source powers in mixtures are unbalanced (e.g., music signals), PCA can
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Figure 3.32: Mixing system of each spectrogram slot when N =M=2; (a) has a
linear time-invariant mixing system and there is no reverberation; (b) has some
leaked components from the previous frame because of reverberation.

even remove direct components of weak sources, which leads to a greater risk of
poor separation.

3.7.2 Relaxation of Rank-1 Spatial Model in ILRMA

To relax the constraint of the rank-1 spatial model in FDICA, IVA, and ILRMA,
I propose the utilization of extra observations for modeling the reverberant
components. In this method, we consider that the number of observations
M is Q times the number of sources N , namely, M = Q × N . In conventional
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overdetermined BSS, PCA is applied before the separation so that M equals N as
shown in Fig. 3.33 (a). In the proposed algorithm, we estimate M separated
signals y̌ as shown in Fig. 3.33 (b). In this approach, the leaked component
from previous frames (ni( j−1) in Fig. 3.32 (b)) of each source is modeled as an
additional new source, namely, each original source is represented with rank-Q
spatial model. To obtain an estimate of the source including both direct and
reverberant components, the separated signals must be clustered using some
criteria, which is a kind of permutation problem. The clustered separated signal
y̌ is represented as follows:

y̌i j =
(
y̌i j,11 · · · y̌i j,1Q y̌i j,21 · · · y̌i j,2Q · · · y̌i j,NQ

)T (3.95)

≡
(
y̌i j,1 · · · y̌i j,M

)T
, (3.96)

yi j,n =
∑

q y̌i j,nq, (3.97)

where y̌i j,n1, . . . , y̌i j,nQ correspond to the direct and reverberant components of
one source n. Finally, each estimated source yi j,n is reconstructed by summing of
the clustered components as represented by (3.97).

3.7.3 Clustering with Spectral Correlations

In Sect. 3.7.2, the complex-valued spectrograms of the sources are estimated
by assuming the independence between them. However, we can expect that
the power spectrograms of the direct and the reverberant components for the
same source have a correlation. Based on this assumption, I propose to use
cross-correlation between the power spectrograms p̌i j,m = | y̌i j,m |

2 to determine
which separated signal y̌i j,nq corresponds to the direct or reverberant component
of which source:

cor(P̌m‖P̌m′) = max
({∑

i, j p̌i j,m p̌i( j+τ),m′ | τ = 0, 1, · · · , τmax
})
, (3.98)

where Pm (∈ R
I×J
≥0 ) is the power spectrograms whose element is p̌i j,m and τ is

an index of the delay in the time frame. For clustering, I first calculate (3.98)
between all separated signals y̌i j,m. Then, the signals are merged in descending
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Figure 3.33: Algorithms of (a) conventional and (b) proposed methods (N = 2,
M = 4, and Q = 2), where subscripts for i and j are omitted.

order of cor until the number of clusters becomes N , with all the clusters (signal
sets) required to have the same number of signals (see Fig. 3.34).

3.7.4 Auto-Clustering with Basis-Shared ILRMA

For ILRMA, we can consider another approach for clustering the signals y̌i j,m into
N sources. Since the reverberation consists of a sum of time-delayed versions of
the direct component, it is represented by the convolution. Even in the power
spectrogram domain, this model is approximately valid [208]. If we assume that
the impulse response in the power spectrogram domain is identical over all
frequency bins, the direct and reverberant components of the same source can be
modeled by the same bases Tn (spectral patterns) and different activations Vnq

(time-varying gains) as follows:

P̌n1 ' TnVn1, P̌n2 ' TnVn2, · · · , P̌nQ ' TnVnQ, (3.99)
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Q = 2), where all sets must have the same number of signals and subscripts for i
and j are omitted..

where P̌nq(∈ R
I×J
≥0 ) is the power spectrogram of signal y̌i j,nq, Tn (∈ R

I×L
≥0 ) is a

shared basis matrix whose elements are ti1,n, · · · , tiL,n, and Vnq (∈ R
L×J
≥0 ) is an

activation matrix whose elements are v1 j,nq, · · · , vL j,nq. This basis sharing
leads to the separated signals y̌i j,n1, . . . , y̌i j,nQ representing the direct and
reverberant components of one source n. The cost function of basis-shared
ILRMA (BSILRMA) can be defined as [207]

LBSILRMA = const. − 2J
∑

i

log | detWi | +
∑

i, j,n,q

(
log

∑
l

til,nvl j,nq +
|yi j,n |

2∑
l til,nvl j,nq

)
.

(3.100)
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(reverberation time: 470 ms)

Figure 3.35: Recording condition of impulse response used in experiment of
reverberant signals.

The update rules of Wi for minimizing (3.100) are the same as (3.50)–(3.52) if we
consider N ← M = NQ and ri j,n =

∑
l til,nvl j,nq, and the update rules of the NMF

variables are obtained as follows:

til,n ← til,n

√√√∑
j,q |yi j,nq |

2vl j,nq
(∑

l ′ til ′,nvl ′ j,nq
)−2∑

j,q vl j,nq
(∑

l ′ til ′,nvl ′ j,nq
)−1 , (3.101)

vl j,nq ← vl j,nq

√√√∑
i |yi j,nq |

2til,n
(∑

l ′ til ′,nvl ′ j,nq
)−2∑

i til,n
(∑

l ′ til ′,nvl ′ j,nq
)−1 . (3.102)

However, the clustering result fluctuates depending on the initial values of
the variables. To avoid this problem, I used IVA and the clustering method
described in Sect. 3.7.3 to obtain initial value of demixing matrixWi.

3.7.5 Experiments and Results

Conditions

To confirm the efficacy of the proposed algorithm, similar to Sect. 3.6.3, I
conducted an evaluation experiment using professional music signals. In this
experiment, I produced observed signals with M = 4 channels and N = 2 sources
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Table 3.12: Music sources used in experiment of reverberant signals

ID Song name Source (1/2)
1 bearlin-roads acoustic_guit_main/piano
2 tamy-que_pena_tanto_faz guitar/vocals
3 fort_minor-remember_the_name drums/vocals
4 ultimate_nz_tour guitar/vocals

Table 3.13: Characteristics of each method used in experiment of reverberant
signals

Method Number of filters per source Postfilter
PCA+IVA 1 None

PCA+ILRMA 1 None
Sawada’s MNMF w/o MWF 1 None

Sawada’s MNMF 1 MWF
Ideal linear filter 1 None
Proposed IVA 2 None

Proposed BSILRMA 2 None

by convoluting the impulse response JR2 (see Fig. 3.35) [202] with each source.
Table 3.12 shows the songs and sources used in this experiment, which were
obtained from SiSEC2011 [122]. I compared IVA with PCA (PCA+IVA) and
ILRMA with PCA (PCA+ILRMA), which both assume the linear time-invariant
mixing (rank-1 spatial model). In addition, two types of Sawada’s MNMFs [84]
were also evaluated: Sawada’s MNMF w/o MWF and Sawada’s MNMF. In Sawada’s
MNMF w/o MWF, the maximum SNR BF [22], which is calculated from the
estimated spatial covariance R(s)i,n , was used for separation. Sawada’s MNMF is
the same method proposed in [84], which utilizes MWF [197] to enhance the
estimated sources. As the proposed methods, spatial-model-relaxed IVA with
the clustering method in Sect. 3.7.3 (Proposed IVA) and spatial-model-relaxed
BSILRMA (Proposed BSILRMA) were evaluated, where the pretrained and
clustered demixing matrix was used for the initial value in Proposed BSILRMA.
Moreover, I evaluated the limit separation performance of linear filtering (Ideal
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Table 3.14: Experimental conditions used in experiment of reverberant signals

Sampling frequency Downsampled from 44.1 kHz to 16 kHz
Window length in STFT 128 ms

Window function Hamming window
Window shift length 64 ms
Number of bases L=15 (K=30)

Maximum delay in time frame τmax=2
Number of iterations 200

linear filter) as a reference performance, which is the maximum SNR BF calculated
using the ideal (oracle) spatial covariances of each source. It is necessary to
apply the back-projection technique (3.14), except for in Sawada’s MNMF,
to the estimated sources. The characteristics of each method are shown in
Table 3.13 and the other conditions are described in Table 3.14. Note that I
used a 128-ms-long window in the STFT for the signals that have 470-ms-long
reverberation, which means that the rank-1 spatial model collapses. As the
evaluation scores, I used the SDR improvement.

Results

Figures 3.36–3.39 shows the average scores and their deviations in 10 trials with
different pseudorandom seeds. The methods using PCA cannot achieve good
separation because they require the assumption of rank-1 spatial model. The
scores of Sawada’s MNMF w/o MWF indicate poor separation accuracy and
strong dependence on the initial values. However, MWF with NMF variables
(the scores of Sawada’s MNMF) can greatly enhance the estimated sources.
Proposed BSILRMA separates the sources with high accuracy. In particular, this
method outperforms the limit performance of linear filtering (Ideal linear filter)
as shown in Figs. 3.38 and 3.39. This is because ground truth sources include
reverberations, which can span more than two dimensional space, and the
proposed algorithm can effectively relax the constraint in rank-1 spatial model.
However, in Fig. 3.37, the proposed methods cannot separate sources because
guitar and vocals are split into one and three components, and the clustering



3.7 Extension of ILRMA for Overdetermined and Reverberant Recording 97

12

10

8

6

4

2

0

-2

-4

S
D

R
 i
m

p
ro

v
e
m

e
n
t 
[d

B
]

 Source 1  
 Source 2 

PCA+IVA PCA+  
ILRMA

Proposed 
IVA

Proposed 
BSILRMA

Sawada’s 
MNMF

w/o MWF

Sawada’s 
MNMF

Ideal 
linear filter
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Figure 3.38: Average SDR improvements for song ID3 used in experiment of
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Table 3.15: Computational times for separation of song ID3 used in experiment
of reverberant signals (s)

PCA+IVA PCA+ILRMA Sawada’s MNMF Proposed Proposed
IVA BSILRMA

23.4 29.4 3611.8 60.1 143.9

cannot divide these components as the individual sources.
Table 3.15 shows actual computational times for the separation of song ID3,

where the calculations were performed using the same environment as the
results in Table 3.10. The computational time of Proposed BSILRMA includes the
initialization time for Wi, which is the same as that of Proposed IVA. We confirm
that Proposed BSILRMA can maintain efficient optimization and achieve good
separation performance.

3.8 Summary

In this chapter, I proposed a new efficient determined BSS technique, ILRMA,
that extends a source model in IVA from a vector to a low-rank matrix using
the NMF representation. Also, the relationship between conventional MNMF
and IVA was revealed: ILRMA is equivalent to MNMF with a rank-1 spatial
model, and time-varying Gaussian IVA can be thought of as a special case of
ILRMA, namely, ILRMA can be thought of as IVAwith increased flexibility of the
model. ILRMA can be optimized using fast update rules based on the auxiliary
function technique. The experimental results show that ILRMA achieves
faster convergence and better results than the conventional BSS techniques. In
addition, an extension of ILRMA for overdetermined BSS with reverberant
observation was proposed. This algorithm utilizes extra observations for
simultaneously modeling both direct and reverberant components in each
source. This method can be considered as an effective relaxation of the constraint
in rank-1 spatial model. Owing to the source modeling using extra observations,
the proposed method can exceed a limit performance of linear separation filter
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for the reverberant signals in some cases.
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4
Single-Channel Semi-Supervised

Source Separation Based on
Discriminative Nonnegative Matrix

Factorization

4.1 Introduction

In this chapter, I address the single-channel supervised source separation, and
propose a new algorithm for discriminative basis training in a semi-supervised
situation. First, I review some existing methods for single-channel source
separation and explain a problem in supervised NMF methods, which is related
to discriminancy of supervised NMF bases. Next, conventional approached
for discriminative basis training in a full-supervised situation are reviewed,
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then the motivation and strategy for discriminative training in semi-supervised
situation are clarified. After giving an explanation of the proposed algorithm, its
performance of music source separation is experimentally confirmed. Finally,
the whole contents in this chapter are summarized.

4.2 ExistingNMF-BasedSingle-ChannelSourceSep-
aration

A single-channel source separation task is one the most important problem
in acoustic signal processing field because it can be applied to a front-end
system for almost all acoustic applications. In contrast to the source separation
for multichannel signals, in this problem, spatial information cannot be used,
and a clue for solving the separation is only the difference of spectral features
in each source, e.g., spectral patterns, spectral envelopes (linear prediction
cepstral coefficients [209, 210, 211]), and mel-frequency cepstrum coefficients
(MFCC) [212, 213]. The problem can be formulated as a clustering or classification
of these extracted features.

In the past decade, NMF becomes the most popular approach for single-
channel source separation. Many techniques based on NMF have been proposed
and investigated so far, and it is still a growing research topic. In [214, 68, 70],
some regularizations including sparseness, temporal continuity (smoothness),
lower complexity, and better predictability, were introduced to the cost function
in NMF. These regularized cost function can be derived from a maximum
a posteriori estimation with a prior distribution of parameters, and it was
generalized as NMF with Bayesian estimation in [72]. We may solve the
separation problem only when such prior models fit to the inherent nature
of the sources. As another approach, in some literatures, the structures of
sources were modeled with NMF decomposition. In [67, 75], shifted NMF was
proposed. They assumed that the timbre of a musical note produced by the same
instrumental source is constant for the entire range of pitch, and the sourcewise
NMF basis can be shifted to represent all the notes of the same source. Similar
idea was introduced in [124], but they utilized average spectral patterns for the
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clustering criteria of NMF bases. Also, in [73, 128, 76], a source filter model or
MFCC and its estimation were exploited for the clustering. In [69], the NMF
bases were extended to have two dimensions (frequency bins × very short time
frames) as spectral fragments. Since such two-dimensional bases should be
convolved to approximately represent the observed matrix, this method is
called nonnegative matrix factor deconvolution. In [71, 74, 126, 127], a Markov
chain model was introduced to NMF bases. These methods mainly aim to
model the temporal (continuous) fluctuation or variation. For example, a piano
note is accurately characterized by a succession of several spectral patterns
corresponding to “attack,” “sustain,” “decay,” and “release” segments. Also, a
musical vibrato can simply be represented by the Markov chain model.

To learn these sourcewise structures, patterns, or natures, a supervised
approach is very effective and has a big potential to achieve better separation
performance. The simplest way of supervised method is to prepare the
sourcewise basis matrix, which can be obtained by independently applying
simple NMF to the training signal for each source. This approach is called
supervised NMF [7, 131, 98], and for music signals, sample sequential notes
(tones) with wide range of pitch (e.g., two or more octaves) can be a good
training signal for the instrumental sources. In particular, supervised NMF
using training signals for all the sources is called FSNMF, and the other approach
(e.g., preparing the training signals for only the target source) is called SSNMF.
The detailed algorithms of these methods are described in the following section.

4.3 Conventional Supervised NMF and Discrimina-
tive Training of Supervised Bases

4.3.1 Conventional Supervised NMF

The algorithms in FSNMF and SSNMF are depicted in Fig. 4.1. In FSNMF,
we prepare the supervised basis matrix for all the sources in the observed
mixture. Let ∆ ∈ RΦ×Ψ

≥0 be a power or an amplitude spectrogram that includes two
sources, S1 ∈ R

Φ×Ψ
≥0 and S2 ∈ R

Φ×Ψ
≥0 . Here, note that two mixture spectrograms ∆
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Training stage

,
Separation stage
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Fixed Fixed

Fixed
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Figure 4.1: Training and separation stages in (a) FSNMF and (b) SSNMF.

and S1 + S2 are generally not identical because they are the amplitude or power
spectrograms, and the addition S1 + S2 do not take the phase cancellation into
account. ∆ is the amplitude or the power spectrogram of the waveform that is
an addition of two time-domain waveforms of S1 and S2. Now, we prepare
the training signals for both sources as S(train)

1 ∈ RΦ×Ψ1
≥0 and S(train)

2 ∈ RΦ×Ψ2
≥0 . In the

training stage, we estimate the sourcewise supervised basis matrices F1 ∈ R
Φ×K1
≥0

and F2 ∈ R
Φ×K2
≥0 (dictionaries of spectral patterns for each source) by performing
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the following NMFs:

(F1,C1) = arg min
F1, C1

Dβ

(
S(train)

1 ‖F1C1

)
, (4.1)

(F2,C2) = arg min
F2, C2

Dβ

(
S(train)

2 ‖F2C2

)
, (4.2)

where these minimization are carried out under a nonnegative constraint for
all the variables (hereafter, all the minimizations in this chapter include the
nonnegative constraint). The activation matrices C1 ∈ R

K1×Ψ1
≥0 and C2 ∈ R

K2×Ψ2
≥0 can

be discarded after the training stage. In the separation stage, we decompose the
mixture ∆ using fixed F1 and F2 as

(G1, G2) = arg min
G1, G2

Dβ(∆‖F1G1 + F2G2). (4.3)

Therefore, we expect that the sources in ∆will be separated by the estimated
activation matrices G1 ∈ R

K1×Ψ
≥0 and G2 ∈ R

K2×Ψ
≥0 as S1 ≈ F1G1 and S2 ≈ F2G2.

Similarly to (2.24), the update rules for these activations can be derived from the
minimization of (4.3) as

G1 ← G1 ◦

{
FT

1
[
∆ ◦ (F1G1 + F2G2)

.−2]
FT

1 (F1G1 + F2G2).−1

} .ϕ(β)
, (4.4)

G2 ← G2 ◦

{
FT

2
[
∆ ◦ (F1G1 + F2G2)

.−2]
FT

2 (F1G1 + F2G2).−1

} .ϕ(β)
. (4.5)

In SSNMF, we only focus on the extraction of the target source from the
mixture. Similarly to FSNMF, the supervised basis matrix F ∈ RΦ×KT

≥0 is obtained
using a training signal of the target source S(train)∈ RΦ×Ψ′

≥0 as

(F,C) = arg min
F, C

Dβ

(
S(train)‖FC

)
. (4.6)
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In the separation stage, ∆ is decomposed using fixed F as

(G,H,U) = arg min
G, H, U

Dβ(∆‖FG + HU), (4.7)

where H ∈ RΦ×KN
≥0 and U ∈ RKN×Ψ

≥0 are the basis and activation matrices for the
non-target sources. Thus, the target source and non-target sources are ideally
separated into FG and HU , respectively. The update rules for G, H , and U are
obtained as follows:

G← G ◦

{
FT [
∆ ◦ (FG + HU).−2]

FT(FG + HU).−1

} .ϕ(β)
, (4.8)

H ← H ◦

{ [
∆ ◦ (FG + HU).−2] UT

(FG + HU).−1UT

} .ϕ(β)
, (4.9)

U ← U ◦

{
HT [
∆ ◦ (FG + HU).−2]

HT(FG + HU).−1

} .ϕ(β)
. (4.10)

General NMF-based source separation including FSNMF and SSNMF
does not ensure the physically accurate signal decomposition because the
additivity of the amplitude or the power spectrograms is not valid and the
NMF decomposition is an approximation. Also, the phase information of each
source cannot be obtained, and the observed phase (noisy phase spectrogram) is
often utilized to perform an inverse STFT. However, even though there are such
drawbacks, FSNMF and SSNMF are still a powerful method and are used for
many situations.

As another approach for obtaining the supervised basis matrices, exemplar-
based NMF was proposed [215, 216, 217]. In this method, every supervised basis
corresponds to an observation in the training data, namely, the training stage is
just a sampling of several spectra from different time frames for each source. This
approach becomes popular for a large-scale training of audio signals because it
does not require a large computational cost in the training stage. However, for
the music signals, it is hard to prepare such large-scale training dataset for all the
possible instruments and vocals. Thus, the separation technique that requires
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only the small dataset is desired for supervised music source separation.

4.3.2 Drawback in Supervised NMF and Motivation for Dis-
criminative Basis Training

These supervised methods have the potential to achieve high separation
performance. However, in both FSNMF and SSNMF, the cost function (4.3) or
(4.7) in the separation stage represents how well the NMF model approximates
∆, which does not include any criteria regarding the degree of separation, and
the pretrained supervised bases may represent not only the relevant source but
also a part of the other sources. For example, in SSNMF, F may represent a part
of the non-target source spectra that should originally be absorbed in H , and this
phenomenon markedly degrades the separation quality. The dominant cause
of this problem is that the supervised bases are independently trained using
isolated training signals of each source as (4.1) and (4.1), or (4.6), and there
may be some spectral overlaps between these training signals even if they are
inherently different sources.

In the context of FSNMF, several methods have been proposed to solve this
problem [134, 135, 8, 9, 10]. In [134], the cross-coherence of the bases was added
to the cost function. In [135, 8, 9, 133], a sample mixture signal obtained by
mixing the sample sounds of each source was utilized in the training stage
to estimate more discriminative sourcewise basis matrices. Also, the authors
in [10] proposed a joint optimization of NMF and a classification problem,
where the NMF variables are optimized so that each basis is classified into one
source during the training. Since these algorithms aim to estimate or train a
discriminative supervised bases, they are called discriminative NMF. However,
the conventional approaches are only applicable to the full-supervised situation
because it is difficult to train such discriminative bases in semi-supervised
situation. In SSNMF, a penalized SSNMF that forces the non-target bases H
to be different from the target bases F was proposed [218, 98]1, but the target
bases F may still represent non-target source components. For this reason,

1After [218] was submitted, a similar penalty was independently proposed in [134] for
FSNMF, but [218, 98] also include another type of penalty.
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in this dissertation, I address the discriminative training of supervised basis
that is applicable not only for FSNMF but also for SSNMF, and propose a new
algorithm for achieving the same objective in the conventional discriminative
NMF.

4.3.3 Algorithm of Discriminative Basis Training for FSNMF

We here review the discriminative NMF in the full-supervised situation. As
discriminative basis training for FSNMF, the following bilevel optimization [219]
has been proposed [8, 9] (in which a two-source case was considered):(

C∗1,C
∗
2
)
= arg min

C1, C2

Dβ

(
S(train)

mix ‖F1C1 + F2C2

)
+ Reg(C1,C2), (4.11)(

F∗1, F
∗
2
)
= arg min

F1, F2

Dβ

(
S(train)

1 ‖F1C
∗
1

)
+Dβ

(
S(train)

2 ‖F2C
∗
2

)
, (4.12)

where S(train)
mix ≈ S(train)

1 + S(train)
2 (addition in the time domain) and Reg(C1,C2) is a

regularization term for the activations corresponding to, for example, sparseness
criteria. Note that the cost (4.12) depends on the minimizers C∗1 and C∗2 of (4.11);
thus, they are functions of F1 and F2. Hence, (4.12) is a bilevel optimization
problem since the basis matrices appear in both levels. This optimization finds
the basis matrices by taking into account the reconstruction of each source,
S(train)

1 and S(train)
2 . Therefore, the obtained bases tend to be discriminative.

The authors in [9] also mentioned that the basis matrices F1 and F2 in (4.11)
and (4.12) do not have to be the same, making the method in [9] a generalized
discriminative NMF. However, it is more challenging to simultaneously optimize
the different bases in (4.11) and (4.12). Thus, they simply used the independently
trained F1 and F2 in (4.11) and obtained different F1 and F2 in (4.12).
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4.4 New Algorithm for Discriminative Basis Train-
ing

4.4.1 Strategy

In the proposed method, I only focus on SSNMF. With a similar motivation to [9],
I propose the training of two types of supervised basis matrix for one source
without bilevel optimization because it is difficult to find supervised bases that
have reconstructive and discriminative spectra simultaneously. To maximize the
discrimination from other sources, the supervised bases should consist of unique
spectral components of the target source, which ideally do not overlap with
those of the other sources. For example, inharmonic components are significant
cues in distinguishing piano spectra from other instrumental sounds. Such
discriminative bases (hereafter, referred to as discriminative bases F′) should only
be used to estimate the activations G of the target source in the separation stage.
After the separation, the target source can be reconstructed with G and the
reconstructive bases (hereafter, referred to as reconstructive bases F).

Figure 4.2 depicts the conceptual difference between conventional and
proposed algorithms of separation. In this figure, the target source (colored in
black) is subjected to interference by the non-target source (colored in gray),
where the fundamental frequency components overlap. When the discriminative
basis F′ consists of unique components of the target source as shown in Fig. 4.2
(b), the discrimination (finding the correct activation G of the target source)
becomes easier than in the case when the supervised basis consists of all the
components of the target source. The fundamental components in the target
source, which are missing in F′, are represented by another non-target basis
H2 in the NMF decomposition. Since the activation vectors G are correctly
estimated in the proposed algorithm, we can reconstruct the target source using
reconstructive basis F as FG.

In conventional SSNMF, the supervised bases F for the target source S

are trained using a sample sound S(train) of the target source. However, to
train the discriminative bases F′, we here prepare a simulative mixture as
S(train)

mix ≈ S(train) + N (train), where N (train) is a sample sound of the non-target
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Figure 4.2: Difference between (a) conventional and (b) proposed algorithms
of separation, where black components correspond to target source and gray
components correspond to interfering source. Proposed method utilizes
discriminative bases (F′) that has unique component of target source for
separation, and target source is synthesized using reconstructive bases (F) that
has complete spectral components.

sources and the addition is performed in the time domain. Although we do not
know the non-target sources in the semi-supervised scenario, we can collect
possible candidates such as different instruments for the target source. Note that
the mixture S(train)

mix is utilized to train the discriminative bases F′, namely, for the
estimation of the unique component in the target source spectra, and the bases
for N (train) are never used in the separation stage.



4.4 New Algorithm for Discriminative Basis Training 111

4.4.2 Discriminative and Reconstructive Basis Training in SS-
NMF

Since the role of the discriminative bases F′ is to obtain the accurate activations,
we would like to find F′ such that the following C∗ and C′ become equivalent:

C∗ = arg min
F, C

Dβ

(
S(train)‖FC

)
, (4.13)

C′ = arg min
C, T,V

Dβ

(
S(train)

mix ‖F
′C +TV

)
. (4.14)

This is also a bilevel optimization problem, and it is challenging to optimize F′

using this criterion. Instead, I here propose the following simple optimization
for training both the discriminative and reconstructive bases F′ and F:

(F,C∗) = arg min
F, C

Dβ

(
S(train)‖FC

)
, (4.15)

(F′,T,V ) = arg min
F ′, T, V

Dβ

(
S(train)

mix ‖F
′C∗ +TV

)
, (4.16)

where T and V are new NMF matrices representing the non-target sources
included in S(train)

mix . The reconstructive bases F and their activations C∗ are
obtained by (4.15). Then, we initialize the discriminative bases as F′← F and
calculate the optimization (4.16) with fixed C∗. Since C∗ is the true activation of
the target source in S(train)

mix , F′ is trained such that the activations of the target
source obtained by NMF with F′ applied to the mixture are as close to C∗ as
possible. In the separation stage, the mixture ∆ is decomposed using fixed F′ as

(G,H,U) = arg min
G, H, U

Dβ(∆‖F
′G + HU). (4.17)

The update rules for (4.15)–(4.17) are the same as those described in Sects. 2.5
and 4.3.1 with the replacement of the corresponding variables. After the
separation stage, the estimated target source Ŝ can be reconstructed as FG or
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using Wiener filtering as

Ŝ ≈
FG

F′G + HU
◦ ∆. (4.18)

In [9], the authors refined the bases used for reconstruction after first fixing the
bases used in the separation. In this paper, we refine the discriminative bases
using the fixed reconstructive bases.

4.5 Experiments

4.5.1 Simple Experiment Using Piano and Flute Tones

In this subsection, I confirm how the proposed algorithm works using simple
audio data of piano and flute tones provided by the MIDI tone generator Garritan
Personal Orchestra 4. The sample sound S(train) contains only a piano tone (C5)
and N (train) contains only a flute tone (C6). Figure 4.3 shows the NMF bases,
which are independently trained for the piano and flute tones using a single
basis.

After initializing F′ as shown in Fig. 4.3 (a), I calculated (4.16) with C∗ and
randomized T and V , where the number of bases in T was set to two. Figure 4.4
shows the estimated F′ and the bases in T after 50 iterations of the update rules
for optimizing (4.16). From Fig. 4.4 (a), we can confirm that spectral notches
appear at the second, sixth, and eighth peaks in F′ and do not overlap with the
peaks in the flute tone, and such lost peak components are compensated by
the other basis as shown in Fig. 4.4 (c). From these results, I consider that the
proposed algorithm can train the unique components of the target source, as
shown in Fig. 4.2, to some extent.

4.5.2 Music Source Separation

Conditions

We compare the separation performance between simple SSNMF and the
proposed method in the music separation task. We used three songs and six
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Figure 4.3: Spectral bases obtained from simple NMF: (a) C5 piano tone and (b)
C6 flute tone.

mixtures obtained from SiSEC2011 [122] (see Table 4.1). Each song consists of
two sources, and 4-fold cross-validation was applied to each song to obtain a
training sound of the target source S(train) and a test mixture ∆ ≈ S(test) + N (test),
where addition was performed in the time domain. More precisely, the training
sound of the target source S(train) was obtained from three-quarters of a source in
a song, and the remaining quarter S(test) was used to obtain a mixture ∆. The
sample sound of the non-target source N (train) was obtained from a different
song as shown in Table 4.2. For example, in the ID3 data, the mixture ∆was
part of the song “Que pena tanto faz” and include the classic guitar sound
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Figure 4.4: Spectral bases obtained from (4.16), where (a) is discriminative basis
F′ of piano tone and (b) and (c) are the other bases in T .
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Table 4.1: Mixture ∆with target and non-target sources

ID Song name Target source Non-target source
of mixture ∆ S(test) and S(train) N (test)

1 Roads Acoustic guitar Drums
2 Roads Drums Acoustic guitar
3 Que pena tanto faz Classic guitar Female vocals
4 Que pena tanto faz Female vocals Classic guitar
5 Ultimate NZ tour Electric guitar Synthesizer
6 Ultimate NZ tour Synthesizer Electric guitar

Table 4.2: Sample sounds of non-target source N (train) for preparing S(train)
mix

ID Song name Sample sound N (train)

1 The ones we love Drums
2 The ones we love Acoustic guitar
3 Remember the name Male vocals
4 Ultimate NZ tour Electric guitar
5 Remember the name Synthetic violins
6 Roads Acoustic guitar

S(test) and female vocals N (test). The sample sound S(train) was the same classic
guitar sound obtained from a different segment of S(test) in the same song, and
the sample sound N (train) was obtained from the different song “Remember
the name.” In addition, since N (train) is a male vocal sound, FSNMF does not
work well in this situation. However, this experimental setting is convenient for
evaluating the proposed method because we assumed that a similar type (but
not exactly the same) of source to N was available as the sample sound N (train).
In the proposed algorithm, preparing N (train) or S(train)

mix is a very important issue,
and this experiment simulates the case that we know only the type of non-target
source in the observed mixture ∆.

The spectrograms were computed by an STFT with a 92-ms-long Hamming
window and half-size shifting. In this experiment, all NMF decomposition
is performed with amplitude spectrograms obtained via STFT, and as the
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divergence criterion in NMF, we set β to 1, namely, NMF based on KL divergence
(KLNMF). The numbers of bases in F, F′, T , and H were set to 35, and the
numbers of iterations in the training ((4.6) or (4.15)) and separation ((4.7) or (4.17))
stages were set to 1000. As the number of iterations in (4.16), we investigated
numbers from 0 to 50, where 0 corresponds to simple SSNMF because the
discriminative bases F′ are equal to the reconstructive bases F. As the separation
performance, we used the improvement of SDR.

Results

Figure 4.5 shows the average SDR improvements of the target source. The zero
point of the horizontal axis corresponds to simple SSNMF. As shown in Fig. 4.5,
the proposed algorithm converges after about 20 iterations and the separation
performance was improved at the point of convergence in all cases except ID6.
Moreover, most of the improvement was obtained in the first four iterations.
This indicates that better discriminative bases F′ exist than F but they are not
obtained at the point of convergence of the proposed method. We consider that
this may be caused by the fact that we do not solve the bilevel optimization
described in the beginning of Sect. 4.4.2. In a future work, we will investigate
how to obtain better discriminative bases as a result of optimization.

4.6 Summary

In this chapter, I proposed a new basis training method for SSNMF. The proposed
algorithm estimates both types of supervised basis matrix, namely, discriminative
and reconstructive bases, for the target source and can be considered as an
approximation to solving bilevel optimization to find discriminative bases.
The efficacy of the proposed method was confirmed by performing a music
separation.
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5
Effective Initialization for

Nonnegative Matrix Factorization
Based on Statistical Independence

5.1 Introduction

In this chapter, I deal with an initialization problem for NMF. As already
discussed so far, NMF is a powerful unsupervised learning method that extracts
meaningful nonnegative features from an observed nonnegative matrix, which
is not only the audio spectrogram but also many data. Various applications
using NMF have been proposed as described in Sect. 2.5. However, the result of
such applications always depends on the initial values of the NMF variables
because of the existence of local minima. To solve this problem, in this chapter, I
propose new initialization methods based on statistical independence between
NMF components. First, existing conventional initializations for NMF are
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introduced with the viewpoint of presence of random values. Next, after the
motivation is clarified, the efficient initialization method based on ICA. To take
the nonnegativity in NMF into account, I propose two types of algorithms: (i)
applying nonnegative ICA (NICA) [220, 221, 222] to the observed data matrix; (ii)
applying simple ICAwith zero-mean Laplace prior to the differential of observed
data matrix using nonnegative projection in each update. The convergence speed
and the converged value of NMF cost function is compared with conventional
and proposed methods. Also, the availability of the proposed initialization for
source separation is experimentally investigated via FSNMF, BSS based on
ILRMA proposed in Chap. 3, and discriminative SSNMF proposed in Chap. 4.
Finally, the contents in this chapter are summarized.

5.2 Conventional NMF Initializations

Similar to Sect. 2.5, let ∆ ∈ RΦ×Ψ
≥0 be the observed nonnegative matrix, F ∈ RΦ×K

≥0 and
G ∈ RK×Ψ

≥0 are the nonnegative basis and activation matrices, Φ is the dimension
in observation, Ψ is the number of observed data samples, and K is the number
of bases. Also, δψ, fk , and gk denote the vectors in the matrices ∆, F and G,
respectively, namely, ∆ = (δ1, · · · , δψ), F = ( f1, · · · , fK), and G = (g1, · · · , gK)

T.
The optimization method in NMF, e.g., MU rules (2.20) and (2.21), requires
initial variables F(ini) and G(ini). Then, a neighborhood local minimum can be
obtained as a solution of the cost function (2.18). Figure 5.1 shows an example
of full-supervised music source separation using FSNMF, where the NMF
variables are initialized using pseudorandom values obtained from various
pseudorandom seeds (hereafter, referred to as Rand1 to Rand10). We can confirm
that the separation performance strongly depends on the NMF initialization.

“Good” initial values for NMF are defined as follows [223]: (i) those that lead
to rapid minimization of the divergence and fast convergence; (ii) those that
lead to low overall divergence at the point of convergence. In this chapter, I
concentrate on the both of these objectives.
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Figure 5.1: Example of SDR improvements of music source separation, where
FSNMF initialized by random values with various pseudorandom seeds is
performed.

5.2.1 Initialization with Random Values

The simplest initialization method is randomization, namely, we prepare
(F(ini), G(ini)) by producing pseudorandom values. This method leads various
results depending on the random seed. Therefore, the best result should be
adopted via many trials with different seeds. In [224, 225], a genetic algorithm
was utilized to find good initial values. In addition, several initializationmethods
based on clustering of the data matrix ∆ have been proposed [226, 227, 228]. The
methods in [226, 227, 228] utilized the result of clustering, i.e., centroid vectors,
to define F(ini), but they required initial centroid vectors, which were usually
determined as random values.

5.2.2 Initialization without Random Values

The authors in [229] proposed the use of subtractive clustering, which does
not require initial centroids, namely, a unique result can be obtained for NMF
decomposition. However, the subtractive clustering includes two hyperparame-
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ters that must be heuristically tuned by the users. As initialization methods
that do not require both random values and hyperparameter tuning, PCA and
singular value decomposition (SVD) have been utilized [230, 223]. In the former
method [230], orthogonal bases and their weights obtained by applying PCA
to ∆ are assigned to (F(ini), G(ini)), where the negative entries are replaced by
their absolute values. In the SVD-based method [223], nonnegative double
SVD (NNDSVD) is applied to ∆. The initial values (F(ini), G(ini)) are set to the
nonnegative left and right singular vectors obtained via NNDSVD. These two
methods can provide a unique decomposition.

5.3 Efficient NMF Initialization Based on ICA

5.3.1 Motivation and Strategy

The initialization methods using PCA or SVD are based on the orthogonality
between the bases representing the data matrix ∆. However, it has been shown
that the optimal NMF bases are along the edges of a convex polyhedral cone, which
is defined by the observed points in ∆, in an Φ-dimensional space [231, 232].
Figure 5.2 shows the various NMF bases when Φ = K = 2. The optimal bases are
satisfactory for representing all the data points, whereas the close bases cannot
represent them because of the nonnegative constraint of the activations. The
orthogonal bases are excessive for representing the data points and have a risk to
represent even a meaningless area. Therefore, PCA and SVD may not be the best
methods for the initialization in NMF.

In this chapter, I propose the utilization of bases and independent sources
estimated by ICA for F(ini) and G(ini), respectively. ICA can estimate non-
orthogonal bases ak that provide a mixing matrix A = (a1, · · · , aK) for
the independent sources as AS, where ak is the K × 1 kth ICA basis and
S = (s1, . . . , sK)

T, sk is the Ψ × 1 kth source signal. Thus, ICA can estimate bases
so that the sources are independent of each other, and such bases tend to be
dissimilar but they are not orthogonal. In addition, the estimated sources sk tend
to be sparse if we assume a super-Gaussian distribution as a source distribution
in ICA. When the coefficients are sparse, their bases will be along the edges of
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(c)

Figure 5.2: Geometry of (a) optimal, (b), orthogonal, and (c) close bases, where
black dots indicate observed data points in positive orthant, gray area indicates
cone defined by data points, broken lines indicate edges of cone, fk denotes kth
NMF basis, Φ = K = 2, and Ψ = 10.

the cone as shown in Fig. 5.2 (a). Therefore, by using the independent sources
and their bases for the initial values in NMF, the optimization may avoid local
minima. In fact, an initialization method for probabilistic latent component
analysis (PLCA) [233] based on ICA has been proposed [234], where PLCA
is inherently identical to KL-divergence-based NMF. However, the method
in [234] did not use the ICA bases ak but the demixing filters wk , which are the
inverse of the ICA bases, W = (w1, · · · , wK)

T = (a1, · · · , aK)
−1, and provide

the estimated sources yk . Also, the authors in [234] did not discuss how to
treat the nonnegative entries in wk and yk . Moreover, there was no comparison
with other initializations such as the PCA-based method and NNDSVD. To
take the nonnegativity into account, I propose the employment of ICA for the
initialization in NMF. Also, the proposed method performs PCA before ICA as a
preprocess for simulating the dimensionality reduction in NMF. To take the
nonnegativity in NMF into account, I here propose two types of initialization
algorithms: (i) applying NICA [220, 221, 222] to the observed data matrix ∆;
(ii) applying simple ICA with zero-mean Laplace prior to the differential of
observed data matrix, ∆Θ, and applying nonnegative projection in each update
of ICA, where Θ is a differential matrix that takes difference between the data
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point and its neighbor in each dimension φ, namely, δφψ − δφ(ψ+1), as

Θ =

©­­­­­­­­«

1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

ª®®®®®®®®¬
. (5.1)

5.3.2 Combination of PCA and ICA

The dimensionality reduction for arbitrary nonnegative matrix X ∈ RΦ×Ψ
≥0 using

PCA can be represented as 
P1X = AS

P2X ≈ 0
, (5.2)

where

P =
(
P1

P2

)
(5.3)

is the Φ × Φ transform matrix of PCA and the sizes of P1 and P2 are K × Φ and
(Φ − K) × Φ, respectively. The row vectors in P correspond to the eigenvectors
of a variance-covariance matrix XXT, and the eigenvectors are arranged in
descending order from the first row to the last row on the basis of their
eigenvalues. Therefore, P1 includes the top K eigenvectors of XXT and P2

includes the remaining eigenvectors. In addition, 0 is the (Φ − K) × Ψ zero
matrix. Thus, we assume that the independent sources in S are mixed via the
mixing matrix A and are observed as the mixture P1X. From the NMF side, the
nonnegative activations are assumed to be independent of each other, as shown
in Fig. 5.3. Note that since NICA will be applied toP1X (after the dimensionality
reduction via PCA), the estimated ICA bases ak are not orthogonal.
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Figure 5.3: Assumption of proposed method, where nonnegative activations are
assumed to be independent of each other.

5.3.3 Proposed Initialization using NICA

NICA can estimate the nonnegative independent components from an observed
multichannel mixture. The essence of NICA is to find a rotation matrixW for the
noncentered and whitened data so that all the estimated (separated) sources
become nonnegative [220]:

Y =WΩ, (5.4)

Ω =WP1X =WAS, (5.5)

where W is a whitening matrix, which transforms P1X so that P1X(P1X)T

becomes the identity matrix, and X = ∆ in this method. Note that this whitening
process does not center the data, namely, it does not remove the mean of P1X.
In addition, Y = (y1, . . . , yK)

T is a matrix that comprises of estimated sources yk ,
andW is a demixing matrix that rotates the whitened data Ω. If the sources sk

are truly nonnegative, we can obtain a global solution such that all the estimates
yk become nonnegative. However, in the proposed method, such a global
solution probably does not exist because of the dimensionality reduction via
PCA. The optimization in NICA is defined as the minimization of the total
power of the residual negative estimates [220]:

min
W

∑
k,ψ

min(0, ykψ)
2, (5.6)
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where ykψ is the entry of Y . The steepest gradient descent has been proposed for
(5.6) as follows [221]:

w̃k = wk − 2η
∑
ψ

min(0, ωkψ)ωkψ, (5.7)

W =
(
W̃W̃T

)−1/2
W̃, (5.8)

where wk and w̃k are the column vectors of W and W̃ , respectively, η is the
stepsize parameter, ωkψ is the entry of Ω, and W̃ is the matrix with wk as its
columns. Whereas optimization without a hyperparameter such as η has also
been proposed as “fast NICA” [222], I use (5.7) and (5.8) in this dissertation.

The estimated sources Y can be used for the initial values of the activation
matrix G. Also, the basis matrix F can be calculated from the estimated demixing
matrixW . If we approximately assume X = FG, S = Y , and A = (WW)−1, the
following equation can be obtained from (5.2):

PFG ≈

[
(WW)−1

0

]
G. (5.9)

Then, the basis matrix F can be obtained as

F ≈ P−1

[
(WW)−1

0

]
. (5.10)

5.3.4 Proposed Initializationusing ICAandDifferential ofData
Matrix

When the source S and the observed data X have both positive and negative
values, the regular ICA algorithm can be used for the estimation ofW . Thus, I
also propose a utilization of ICA with differentiated data matrix ∆Θ. Whereas
we assumed X = ∆ and estimate S = G in Sect. 5.3.3, in this method, X = ∆Θ is
assumed to estimate S = GΘ. I here apply ICA with Laplace distribution as the
super-Gaussian source distribution because the ICA cost function with Laplace
distribution becomes convex with respect to W , and the unique solution can be
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obtained via optimization. In addition, the fast and stable optimization based on
auxiliary function technique has been proposed [176]. After the estimation of
W , the initial activation and basis matrices can be calculated as G = W∆ (not
G = WX) and

F ≈ P−1

[
W−1

0

]
. (5.11)

In this method, there is no guarantee that the basis matrix F is a nonnegative
matrix. To ensure the nonnegativity, in each iteration of ICA optimization, I
propose to calculate F using (5.11), update as F ← max(F, 0) (projected to the
nonnegative values), and recalculateW from the updated F.

5.3.5 Nonnegativization

Since we apply PCA for dimensionality reduction, there is no guarantee that
all the entries of the obtained activation matrix G become nonnegative. In
particular, the proposed method using ICA does not ensure the nonnegativity of
the basis matrix F. For these reasons, I apply nonnegativization to the obtained F

and G by the proposed methods. I here perform any of the following three
nonnegativizations:

Nonnegativization 1 : F(ini) = |F |, G(ini) = |G |,

Nonnegativization 2 : F(ini) = |F |, G(ini) = αGF
(ini)T∆,

Nonnegativization 3 : G(ini) = |G |, F(ini) = αF∆G
(ini)T,

where αF and αG are coefficients for fitting the scale of F(ini)G(ini) to ∆. The
values of these coefficients depend on the following NMF after the proposed
initialization and can easily be calculated from

αF = arg min
α

Dβ

(
∆‖α∆G(ini)TG(ini)

)
, (5.12)

αG = arg min
α

Dβ

(
∆‖αF(ini)F(ini)T∆

)
. (5.13)
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Here, I describe the solutions of (5.12) and (5.13) for the cases of NMF based on
EU distance (EUNMF), KLNMF, and ISNMF as follows:

For EUNMF : αF =

∑
φ,ψ δφψ

∑
ψ′,k δφψ′g

(ini)
kψ′

g
(ini)
kψ′∑

φ,ψ

(∑
ψ′,k δφψ′g

(ini)
kψ′

g
(ini)
kψ′

)2 , αG =

∑
φ,ψ δφψ

∑
φ′,k f (ini)

φ′k
f (ini)
φ′k

δφ′ψ∑
φ,ψ

(∑
φ′,k f (ini)

φ′k
f (ini)
φ′k

δφ′ψ

)2 ,

For KLNMF : αF =

∑
φ,ψ δφψ∑

φ,ψ

∑
ψ′,k δφψ′g

(ini)
kψ′

g
(ini)
kψ′

, αG =

∑
φ,ψ δφψ∑

φ,ψ

∑
φ′,k f (ini)

φ′k
f (ini)
φ′k

δφ′ψ
,

For ISNMF : αF =
1

ΦΨ
∑
φ,ψ

δφψ∑
ψ′,k δφψ′g

(ini)
kψ′

g
(ini)
kψ′

, αG =
1

ΦΨ
∑
φ,ψ

δφψ∑
φ′,k f (ini)

φ′k
f (ini)
φ′k

δφ′ψ
,

where f (ini)
φk and g

(ini)
kψ are the entries of F(ini) and G(ini), respectively.

5.4 Experimental Comparisons

5.4.1 Performance as Initial Value for NMF

Conditions

To evaluate the performance of the proposed method, I compare the convergence
speed of the cost function in NMF among five initialization methods, namely,
uniform random values in the range between ε and 1, PCA-based initializa-
tion [230], NNDSVD [223], the proposed method using NICA, and the proposed
method using ICA with differentiated data matrix. As the observed data ∆, I
used a power spectrogram of the music signal “Actions - One Minute Smile”
obtained from the MSD100 dataset, which was published by SiSEC2015 [235].
MSD100 consists of four parts for each song, namely, vocals, bass, drums, and
other. I here chose only the vocals and other sources. In addition, the section of
these source signals from 40 s to 100 s was extracted to obtain 60-s-long vocals
and other signals, and the observed signal is a mixture of them. The power
spectrogram of the observed signal was computed by an STFT with a 92-ms-long
Hamming window and half-size shifting. The size of matrix ∆ was Φ = 2049 and
Ψ = 1290, and the sampling frequency was 44.1 kHz. After the initialization of
F and G using the conventional or proposed method, EUNMF, KLNMF, or
ISNMF was preformed, where the MU update rules (2.20) and (2.21) were used
to minimize (2.18), and the number of bases was set to K = 60. For the random



5.4 Experimental Comparisons 129

100

2

3

4

5

6

7

8

9
1000

C
o
s
t 

fu
n

c
ti
o

n
 o

f 
IC

A

302520151050
Iteration

0.01

2

3

4

5
6

0.1

2

3

4

5
6

1

C
o
s
t 

fu
n

c
ti
o

n
 i
n

 N
IC

A

2000150010005000

Iteration

(a) (b)

Figure 5.4: Convergence of cost function in (a) NICA and (b) ICA.

initialization, I performed 10 trials with various pseudorandom seeds (Rand1 to
Rand10). Also, for the proposed methods, I compared six methods, namely, two
algorithms (NICA and ICA) and three nonnegativizations (hereafter, referred to
as NICA1 to NICA3 and ICA1 to ICA3, where the number corresponds to the
type of nonnegativization described in Sect. 5.3.5). The number of iterations for
optimization was set to 2000 in NICA1–NICA3 and 30 in ICA1–ICA3.

Results

Figure 5.4 shows the convergence of the cost function (5.6) in NICA and ICA.
Since I used the steepest gradient descent (5.7) and (5.8), more than 1000
iterations were required for NICA. This may be reduced by using fast NICA [222].
The convergence of ICA based on auxiliary function technique (Fig. 5.6 (b)) is
much faster than that of NICA. However, since this algorithm includes the
nonnegative projection in each iteration, the optimization does not ensure
monotonic decrease. In addition, the computational complexity of ICA is large
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(a)

(b)

Figure 5.5: Convergences of cost function in EUNMF, where NICA1–NICA3 are
depicted in (a), ICA1–ICA3 are depicted in (b), and conventional methods are
depicted in both.
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(a)

(b)

Figure 5.6: Convergences of cost function in KLNMF, where NICA1–NICA3 are
depicted in (a), ICA1–ICA3 are depicted in (b), and conventional methods are
depicted in both.
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(a)

(b)

Figure 5.7: Convergences of cost function in ISNMF, where NICA1–NICA3 are
depicted in (a), ICA1–ICA3 are depicted in (b), and conventional methods are
depicted in both.
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Table 5.1: Examples of computational time in each process (s)

Process Algorithm Processing time
NICA1–NICA3 (2000 iterations) 4.36

ICA1–ICA3 (30 iterations) 10.89
Initialization PCA-based initialization 0.98

NNDSVD 2.40
EUNMF (1000 iterations) 12.78

NMF KLNMF (1000 iterations) 48.07
ISNMF (1000 iterations) 214.26

because it includes inverse calculation of K × K matrixW . Figures 5.5–5.7 show
the convergences of the cost function (2.18) in NMF, where NICA1–NICA3 are
depicted in (a), ICA1–ICA3 are depicted in (b), and the conventional methods
are depicted in both. From these results, we can confirm that the random
initialization has a slow convergence speed and a poor local minimum at the
point of convergence. PCA-based initialization provides faster and deeper
minimization than random initialization, especially for EUNMF and ISNMF.
NNDSVD has the best convergence except for ISNMF. The methods based
on NICA outperform these conventional methods in all the cases of NMF. In
particular, NICA2 provides the most stable convergence. The methods based
on ICA also provide comparable performance with PCA-based initialization
and NNDSVD. However, the best nonnegativization depends on the criteria in
NMF cost function. Examples of the computational time for each initialization
method and NMF are given in Table 5.1. Although the proposed methods have
larger computational costs than the other methods, the increase is not critical
compared with the case of NMF iterations.

5.4.2 Full-Supervised Audio Source Separation

Conditions

I compare the performance of audio source separation using FSNMF. In this
experiment, I chose the top 15 songs in alphabetical order of a test dataset in
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MSD100 and only the vocals and other parts as the source signals. Similarly
to in Sect. 5.4.1, 60-s-long vocals and other signals were used. The power
spectrograms of the vocals and other signals were calculated via STFT as ∆V

and ∆O, respectively. In addition, sixfold cross-validation was applied to them,
namely, the training sounds of each source (∆(train)

V and ∆(train)
O ) were obtained

from five-sixths of the frames in ∆V and ∆O, and the remaining one-sixth of the
frames, ∆(test)

V and ∆(test)
O , were used to obtain a mixture ∆(test)

mix ≈ ∆
(test)
V + ∆

(test)
O of

vocals and other source signals, where the mixing was performed in the time
domain. The supervised sourcewise basis matrices FV and FO were trained by
the following NMF:

FV = arg min
F, G

Dβ

(
∆
(train)
V ‖FG

)
, (5.14)

FO = arg min
F, G

Dβ

(
∆
(train)
O ‖FG

)
, (5.15)

where F and G are initialized by F(ini) and G(ini), respectively, and the nonnegative
constraint is assumed in thisminimization. In the separation stage, the supervised
NMFwas performedwith fixed basesFV andFO under the nonnegative constraint
as follows:

min
GV, GO

Dβ

(
∆
(test)
mix ‖FVGV + FOGO

)
, (5.16)

where the initial values of GV and GO were set to GV = αGF
T
V∆
(test)
mix and

GO = αGF
T
O∆
(test)
mix , respectively. Therefore, the separation performance only

depends on the initial values F(ini) and G(ini) used in (5.14) and (5.15). I used
IS-NMF for both the training and separation stages. The number of iterations in
both stages was set to 200, and the numbers of bases in FV and FO were set to 50.
As a performance measure of the source separation, I used the improvement of
SDR. The other experimental settings were the same as those in Sect. 5.4.1.

Results

Figure 5.8 shows the average SDR improvements of the 15 songs. The proposed
methods achieve better separation performance than random initialization, as
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Figure 5.8: SDR improvement of supervised NMF for (a) vocals and (b) other.

particularly clearly shown in Fig. 5.8 (b). In supervised NMF, it is important to
train the appropriate bases that represent only the corresponding source and
do not represent interfering components. This result suggests that the ICA
bases are preferable to the orthogonal bases, which can cover a wider convex
polyhedral cone as shown in Fig. 5.2 (b).
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IVA

Observed signal

Power spectrogram 

of separated signal

NMF 
initialization

ISNMF

Initial NMF variables

ILRMA

Initial source model

Separated signal

Figure 5.9: Process flow of BSS based on ILRMAwith NMF initialization method.

5.5 Application to ILRMA and Discriminative SS-
NMF

The separation performance of NMF-based source separation always depends
on the initial values of basis and activation matrices. Although the deep
minimization of NMF cost function does not guarantee good separation
performance, faster and stable optimization is preferable for many NMF-based
algorithms. In this section, I investigate the availability of the proposed
initializations for BSS based on ILRMA proposed in Chap. 3 and discriminative
SSNMF proposed in Chap. 4.

5.5.1 BSSBased on ILRMAwithVarious Initialization forNMF

Figure 5.9 shows a process flow of initialization in ILRMA. Since the task is a
blind situation, I first apply IVA to an observed multichannel signal xi j to obtain
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Table 5.2: Averaged SDR improvements over various speech signals and sources
with same recording conditions, where these scores are obtained by ILRMAw/o
partitioning function with various NMF initializations

Conditions PCA-based Random(rev. time and NICA1 NICA2 NICA3 ICA1 ICA2 ICA3 initialization NNDSVD initializationmic. spacing)
130 ms & 1 m 5.13 4.13 5.18 12.40 7.07 12.63 10.27 10.21 11.91
130 ms & 5 cm 5.52 5.67 5.69 6.17 6.08 4.67 6.54 5.79 8.97
250 ms & 1 m 2.71 2.06 3.24 4.81 3.37 5.76 3.10 2.26 7.34
250 ms & 5 cm 5.89 5.40 5.61 5.74 5.85 4.73 5.75 5.04 6.43

a tentative separated signal yi j and its power spectrogram Pn. It is used for
determining the initial basis and activation matrices T (ini)

n and V (ini)
n for each

source. Then, the initial source model can be obtained by simple ISNMF. When I
apply ILRMA, the demixing matrix Wi is reset to the identity matrix to avoid the
poor local solution.

I conducted the same experiment in Sect. 3.6.3. Tables 5.2 and 5.3 show
the result of average SDR improvement, where only ILRMA w/o partitioning
function is performed and compared with various NMF initialization methods.
The result of ILRMA using random initialization is the same as those in
Tables 3.6 and 3.7, namely, those are the average scores of 10 trials with different
pseudorandom seeds, and the other scores are the results of only the single trial.
From these results, we can confirm that the initialization of source model in
ILRMA does not lead better separation performance than the random source
model for both speech and music signals. The reason may be that the estimates
of IVA is one of the local minimum solution for ILRMA, and the pretrained
source model does not drastically change from its initial values in some signals.

5.5.2 DiscriminativeSSNMFwithVarious Initialization forNMF

I here conducted the same experiment in Sect. 4.5.2 with proposed discriminative
SSNMF, where the various NMF initialization methods are applied to (4.15) in
the training stage. The other NMF variables T , V , H , and U used in (4.16) and
(4.17) are initialized by random values, but the same random values are used for
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Table 5.3: Averaged SDR improvements over various music signals and sources
with same impulse response, where these scores are obtained by ILRMA w/o
partitioning function with various NMF initializations

Impulse PCA-based Random
response NICA1 NICA2 NICA3 ICA1 ICA2 ICA3 initialization NNDSVD initialization

E2A 8.28 8.66 8.07 9.12 8.92 8.68 9.02 8.46 14.41
JR2 3.52 3.87 3.57 4.04 4.07 4.49 4.13 3.98 9.06

all the methods.
Figures 5.10–5.15 show the average scores of each data shown in Table 4.2,

where the I showed only the best nonnegativization in NICA1–NICA3 and
ICA1–ICA3 in each result for readability, but the other results also achieve
comparable improvements with those. From these results, we can confirm that
the proposed initialization clearly improves the separation performance of
SSNMF, and these facts fit to the results in Fig. 5.8. Thus, we can guess that the
good initialization for NMF may be effective particularly for the supervised
source separation using NMF, such as FSNMF and SSNMF.

5.6 Summary

In this chapter, I addressed an efficient initialization method for NMF and
proposed the utilization of ICA bases and estimated independent sources as
the initial values of the basis and activation matrices, respectively. From an
experimental comparison, some of the proposed method provides faster and
deeper convergence of the NMF cost function than the conventional methods.
Also, in supervised audio source separation, the proposed method achieves
better performance than that obtained by random initialization.
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Figure 5.10: Average SDR improvement of ID1 for each number of iterations in
(4.16) with various NMF initializations.

Figure 5.11: Average SDR improvement of ID2 for each number of iterations in
(4.16) with various NMF initializations.
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Figure 5.12: Average SDR improvement of ID3 for each number of iterations in
(4.16) with various NMF initializations.

Figure 5.13: Average SDR improvement of ID4 for each number of iterations in
(4.16) with various NMF initializations.
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Figure 5.14: Average SDR improvement of ID5 for each number of iterations in
(4.16) with various NMF initializations.

Figure 5.15: Average SDR improvement of ID6 for each number of iterations in
(4.16) with various NMF initializations.
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6
Conclusion

6.1 Summary of Dissertation

In this dissertation, I addressed a problem of music source separation, which can
be applied to many valuable systems. This problem generally includes many
situations, and I mainly dealt with following two main topics:

• determined (and overdetermined) BSS

• single-channel semi-supervised source separation

For both of them, I proposed new effective optimization algorithms based on
NMF, which simultaneously achieve satisfactory separation performance and
practical efficiency.

In Chap. 3, I proposed a new determined BSS algorithm called ILRMA. This
method can be considered as a natural extension of traditional BSS algorithms,
FDICA and IVA. In FDICA, the source model was a scalar random variable,
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which obeys a non-Gaussian distribution. This scalar source model is extended to
a multivariate vector variable as IVA, which enables a permutation-problem-free
frequency domain separation. As a further extension of the source model,
ILRMA employs NMF decomposition for capturing the low-rank time-frequency
structure of the sources. Owing to the low-rankness of the music spectrogram,
ILRMA can effectively model its structure and accurately estimate spatial
demixing filters. Also, I revealed the intriguing relationships between IVA,
MNMF, and ILRMA;MNMFwith rank-1 spatial model is identical to ILRMA, and
ILRMA with the single NMF basis for each source is essentially the same model
as IVA. The optimization of ILRMA is based on the auxiliary function technique,
resulting in a faster and more stable convergence than the conventional MNMF.
The advantage of its separation performance was experimentally confirmed in
both speech and music signals.

In Chap. 4, I proposed a new algorithm for discriminative training of
NMF bases. This algorithm employs two types of supervised bases for one
target source, which are called reconstructive and discriminative bases. The
reconstructive bases include all the frequency components of the target source,
and the discriminative bases consist of only the unique components to maximize
the ability of discrimination from the other non-target sources. Whereas the
discriminative bases training comes down to a bilevel optimization problem, I
proposed a simple optimization algorithm for obtaining both reconstructive
and discriminative bases instead. The efficacy of the proposed discriminative
SSNMF was validated via semi-supervised music source separation task.

In Chap. 5, a general problem in NMF optimization was dealt. Since NMF
is not a convex optimization problem, all the performance of NMF-based
application always depend on the initial values of basis and activation matrices.
As a remedy of this problem, I proposed a new efficient initialization method
based on statistical independence. In this method, the estimates of ICA are
utilized for the initial values of NMF variables, which are non-orthogonal
bases and their coefficients. The proposed initialization achieved faster and
deeper minimization than the conventional orthogonality-based initializations.
In addition, the availability of the proposed initialization for determined
BSS, single-channel FSNMF, and discriminative SSNMF was experimentally
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investigated. The result showed that the proposed method can lead better
separation for a supervised NMF approach.

6.2 Future Works

The following points still remain to be investigated or clarified.

• Since ILRMA has an NMF source model, we can easily employ some prior
knowledges of each source for the optimization. The simple extension
is a supervised ILRMA, which utilizes pretrained NMF bases of each
source. As further supervision, external information such as music score
or an annotation by users can be a good candidate for improving source
model in ILRMA. However, to utilize such external information, the scale
ambiguity among frequency bins in ILRMAmust be solved in advance.
This is because the scale ambiguity has a risk to distort the pretrained
NMF bases or the given structure by the users. Some ICA optimizations
without the scale ambiguity were proposed, for example, ICA with
minimal distortion principle [236, 237], single-input and multiple-output
ICA [238, 239, 240, 241], and multiple-input and single-output ICA [242].
These algorithms may be unified with ILRMA.

• Whereas a spectrogram of instrumental source has a low-rank time-
frequency structure, a vocal spectrogram may not have the low-rank
property as shown in Fig. 2.7 owing to its variety of pitches and phonemes.
In the experiments presented in Sect. 3.6, ILRMA can achieve accurate
source separation even for the mixture with a vocal source. This might be a
collateral effect of an accurate modeling of the other instrumental source,
namely, the better vocal separation might be achieved as a side effect of the
accurate separation of remaining instrumental sources. Indeed, the speech
separation based on ILRMA with a large number of bases could not give
the highest performance of separation (see Fig. 3.14). For vocal and speech
signals, another property may be useful to capture their time-frequency
structures. In the literature [243, 244], robust PCA [245, 246] is used for
extracting a vocal source from music signals, where robust PCA can
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decompose an observed matrix into a low-rank structure and a sparse
component, and the vocal source tends to be estimated as the sparse
component. If we introduce such sparse source model to ILRMA for
representing vocals, the music source separation would be improved.

• The cost function in ILRMA (3.46) is based on IS divergence, and the
MU rules (3.54) and (3.55) are the same as those of simple ISNMF. The
other popular criteria, KL divergence and EU distance, may also be used
for the cost function in ILRMA. The source models corresponding these
criteria (Poisson distribution for KL divergence and Gaussian distribution
for EU distance) do not have a reproductive property. Thus, unlike
ISNMF, the additivity of power spectrograms in expectation sense does
not hold in KLNMF and EUNMF. As another source model with the
reproductive property, NMF based on Cauchy distribution was proposed as
Cauchy NMF [247], and it is reported that it gives slightly better separation
performance than ISNMF. This source model can be used for an extension
of ILRMA.

• In Chap. 4, I have dealt with only SSNMF with a new discriminative
training method. However, the main idea in the proposed method can
also be used for full-supervised situation. The comparison with the
conventional discriminative NMF and the proposed algorithm in the
full-supervised situation need to be investigated.

• The proposed algorithm of discriminative bases training is an approxima-
tion of the solution obtained by original bilevel optimization. This fact
causes the decrease of SDR improvement at the converged point of algo-
rithm as shown in Fig. 4.5. To avoid this problem, another approximative
optimization or a stopping criteria must be considered for a practical use.

• The proposed algorithm of discriminative SSNMF can be combined with a
penalized SSNMF [98], which forces the non-target bases to be different
from the target bases.
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A
Derivation of Shape Parameter for

Artificial Random Spectrogram with
Constant Kurtosis

To produce an artificial random spectrogram FG with constant kurtosis, we
derive the optimal shape parameter κ for each value of R. Hereafter, we denote
an I × J matrix whose elements are firgr j as FrGr , namely, FG =

∑
r FrGr . Also,

we denote a pth-order moment and pth-order cumulant of FrGr as µpr and cpr

and those of FG as µ′p and c′p, respectively. When R increases beyond one, the
matrix FG becomes a linear combination expressed as

∑R
r=1 FrGr . Therefore, the

kurtosis of FG can be derived via the moment-cumulant transform [200]. Since
fir and gr j are generated from i.i.d. gamma distributions, µpr is equal to the
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product of pth-order moments of Fr and Gr as follows:

µpr = θ
2p

p−1∏
q=0
(κ + q)2. (A.1)

By the moment-cumulant transform, cpr from p = 1 to p = 4 can be represented
as

c1r = µ1r, (A.2)

c2r = µ2r − µ
2
1r, (A.3)

c3r = µ3r − 3µ1r µ2r + 2µ3
1r, (A.4)

c4r = µ4r − 4µ1r µ3r − 3µ2
2r + 12µ2

1r µ2r − 6µ4
1r . (A.5)

Since a cumulant satisfies additivity for the variables, the cumulant of FG is
easily derived as follows:

c′p =
R∑

r=1
cpr = Rcpr . (A.6)

The moments of FG for p = 2 and p = 4 are given by the moment-cumulant
transform as

µ′1 = c′1, (A.7)

µ′2 = c′2 + c′21, (A.8)

µ′3 = c′3 + 3c′1c′2 + c′1
3, (A.9)

µ′4 = c′4 + 3c′22 + 4c′1c′3 + 6c′21c′2 + c′41. (A.10)

Finally, the kurtosis of FG can be derived as

kurtosis(FG) =
µ′4

µ′22
=
ζ(κ,R)

ξ(κ,R)
. (A.11)

Therefore, by solving (3.92), we can obtain the shape parameter κ so that the
kurtosis of FG has the same value (kurt) for any value of R.
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