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Daichi Kitamura

Abstract

In this thesis, to address a music signal separation problem, I propose a new
hybrid method that concatenates directional clustering and supervised nonneg-
ative matrix factorization (NMF) with spectrogram restoration for the purpose
of the specific sound extraction from the multichannel music signal that consists
of multiple instrumental sounds. Recently, a main format for obtaining musical
tunes has become electronic data such as music files, which can be made available
over the Internet owing to progress in information technology. Hence, users can
easily obtain and edit music tunes, resulting in the active creation of new con-
tents. According to this background, music signal separation technologies have
much attention. Music signal separation is aimed to extract a specific target sig-
nal from music signals that contain multiple music instrumental sounds. Audio
remixing by the users, automatic music transcription, and musical instrument
education are one of the feasible music signal separation applications.

In the previous studies, music signal separation based on NMF has been a very
active area of the research. Various methods using NMF have been proposed, but
they remain many problems, e.g., poor convergence in update rules in NMF and
lack of robustness. To solve these problems, I propose a new supervised NMF
(SNMF) with spectrogram restoration and its hybrid method that concatenates
the proposed SNMF after directional clustering. Via extrapolation of supervised

spectral bases, this SNMF with spectrogram restoration attempts both target

*Master’s Thesis, Department of Information Science, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-MT1251035, March 6, 2014.



signal separation and reconstruction of the lost target components, which are
generated by preceding binary masking performed in directional clustering.

Next, I provide a theoretical analysis of basis extrapolation ability and reveal
the mechanism of marked shift of optimal divergence in SNMF with spectrogram
restoration and trade-off between separation and extrapolation abilities. Evalua-
tion experiment of the separation using artificial and real-recorded music signals
show the effectiveness of the proposed hybrid method.

Finally, based on the above-mentioned findings, I propose a new scheme for
frame-wise divergence selection in the proposed hybrid method to separate the
target signal using optimal multi-divergence. The results of an evaluation exper-
iment show that the proposed hybrid method with multi-divergence can always
achieve high performance under any spatial conditions, indicating the improve-

ment in robustness of the proposed method.

Keywords:

Music signal separation, Directional clustering, Spectrogram restoration, Non-

negative matrix factorization, Supervised method.
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1. Introduction

1.1 Background

In recent years, the main format for obtaining musical tunes has become elec-
tronic data such as music files, which can be made available over the Internet
owing to progress in information technology. Hence, users can easily obtain and
edit music tunes, resulting in the active creation of new contents. These con-
sumers’ activities have rapidly increased in the past few years with the expansion
of social networking services and video-sharing websites. However, it is still diffi-
cult to edit a specific instrumental signal in general music tunes containing many
instruments because almost all the commercially available music data are mixed
down, and consumers cannot obtain each solo-played instrumental signal in ad-
vance. Such audio editing of each sound source will enable us to engage in new
activities based on the appreciation of musical tunes and can be applied to many
valuable techniques including audio remixing by users [I], 2], musical instrument
education, 3D audio reproduction [3], and automatic music transcription [4] [5]
(see Fig.[). With this background, music signal separation technologies have
attracted considerable interest and been intensively studied [0, [7, [§, 9, [10] in re-
cent years. However, it remains difficult to freely extract a specific music signal,
particularly in the case of instruments that belong to the same family.

Signal separation can be classified into overdetermined and underdetermined
problems. In the former situation, the number of channels is greater than the
number of sound sources, and many techniques have been studied and proposed
for overdetermined signal separation [11], 12, [13]. However, such separation tech-
niques cannot be applied to the above-mentioned music signal separation problem
because almost all musical tunes are provided in a stereo format and the num-
ber of sources is greater than two. Therefore, techniques for underdetermined

separation are required and should be used to achieve music signal separation.

1.2 Prior works

As a means of addressing underdetermined signal separation, in recent years, non-

negative matrix factorization (NMF) [14], which is a type of sparse representation
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Figure 1. Applications of music signal separation.

algorithm, has received much attention. NMF for acoustical signals decomposes
an input spectrogram into the product of a spectral basis matrix and its activation
matrix. The methods of signal separation based on NMF are roughly classified
into unsupervised and supervised algorithms. The former method attempts sep-
aration without using any training sequences, instead being subjected to various
constraints, as proposed in [15] [16], 17, (18, 19]. However, these techniques have
difficulty in clustering the decomposed spectral bases into a specific target sound
because the entire procedure should be carried out in a blind fashion. To solve
this problem, supervised NMF (SNMF) [20] and its improved method, penalized
SNMF (PSNMF) [211, 23, 22], have been proposed. These methods include a priori
training, which requires some sound samples of a target instrument, and separate
the target signal using supervised bases. PSNMF can extract the target signal to
some extent, particularly in the case of a small number of sources. However, for
a mixture consisting of many sources, such as more realistic musical tunes, the

source extraction performance is markedly degraded because of the existence of



instruments with similar timbre.

To apply NMF-based separation methods to multichannel signals, multichan-
nel NMF has been proposed as an unsupervised separation method [24], 25]. This
method is a natural extension of NMF for a stereo or multichannel signal and is
a unified method that addresses the spatial and spectral separation problems si-
multaneously. However, such unsupervised separation is a difficult problem, even
if the signal has multichannel components, because the decomposition is under-
specified. Hence, these algorithms involve strong dependence on initial values
and lack robustness. For multichannel signal separation, directional clustering
has also been proposed as an unsupervised method [26, 27, 28]. This method
quantizes directional information via time-frequency binary masking under the
assumption that the sources are completely sparse in the time-frequency domain.
However, there is an inherent problem that sources located in the same direction
cannot be separated using only the directional information. To cope with this
problem, a hybrid method for multichannel signal separation, which concatenates
PSNMF after directional clustering, has been proposed [29]. However, this hy-
brid method also has a problem that the extracted signal suffers from considerable
distortion because the signal obtained by directional clustering has many spec-
tral chasms, which mean spectral holes in the spectrogram. This results in the
cascaded SNMF being forced to incorrectly mimic such artificial spectral chasms.

In summary, no effective technique has yet been proposed for separating the
target source from a multichannel signal with high accuracy and satisfactory
robustness. Therefore, attempts should be made to develop an effective algorithm
for underdetermined signal separation. Such a robust signal separation method
for multichannel signals will be applicable to not only music signals but also
speech signals recorded by a microphone array to enhance the speech and suppress

interfering noise.

1.3 Scope of thesis

To achieve high-quality music signal separation with robustness, in this thesis, I
propose a new hybrid method that concatenates a new SNMF algorithm and an
unsupervised multichannel signal separation method. In addition, I also provide

a mathematical analysis for optimizing the proposed hybrid method. Figure[2
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Figure 2. Relation between conventional methods and proposed hybrid methods.

depicts the relation between the conventional methods and the proposed hybrid
methods.

The hybrid method divides the stereo music signal separation problem into
two stages, namely, spatial separation and spectral separation. The spatial sepa-
ration utilizes binary masking, which is performed by the directional clustering
technique, in the time-frequency domain. A clustering approach using spatial in-
formation is a common strategy used for multichannel signal separation because
it works well even in underdetermined situations. Then, in the spectral separa-
tion stage, a new SNMF algorithm is applied to separate the signals in the same
direction. In addition, this SNMF algorithm improves the sound quality of the
target signal, which is deteriorated by the preceding binary masking performed
in directional clustering. Therefore, the proposed hybrid method is a divide-and-

conquer method that utilizes suitable decompositions in each separation problem



and achieves robust multichannel signal separation with less sensitivity to the
initial values.

In the conventional hybrid method [29], the spectral chasms generated by bi-
nary masking degrade the sound quality of the separated target signal because
PSNMF is concatenated directly after directional clustering. To solve this prob-
lem, I propose a new SNMF with spectrogram restoration. By utilizing index
information generated from binary masking, the proposed SNMF regards the
spectral chasms as unseen observations, and finally reconstructs the target signal
components via spectrum extrapolation using supervised bases. In other words,
this SNMF can be categorized as a inpainting because the deteriorated spectro-
gram resulting from the preceding binary masking can be recovered. Note that an
SNMF-based extrapolation technique for acoustic signals has been proposed as
a means of expanding the acoustic signal bandwidth [30]. However, this method
cannot be applied to signal separation.

The proposed SNMF with spectrogram restoration attempts both signal sepa-
ration and basis extrapolation using the supervised bases. In previous studies, the
analysis of the optimal divergence criterion in SNMF has only been discussed for
signal separation [21], 22 31], and the issue of the optimal divergence criterion in
SNMF for basis extrapolation has not been addressed. Therefore, in this thesis, I

analyze the ability of basis extrapolation for each divergence criterion in SNMF.

1.4 Outline of thesis

The thesis is organized as follows. First, I describe related works on single-
channel and multichannel signal separation methods in Sect.2l In this section,
an overview of NMF is also given. In Sect.Bl I propose a new SNMF with
spectrogram restoration and derive its update rules for optimization. Also, the
relation between the extrapolation ability and the divergence criterion in SNMF
is clarified by theoretical analysis based on a signal generation model to find
the optimal criterion for SNMF with spectrogram restoration. In addition, the
efficacy of the proposed hybrid method with the proposed SNMF is confirmed
experimentally for musical signal separation. On the basis of the above-mentioned
findings, in Sect.dl I propose a new method for switching the divergence criterion

in SNMF with spectrogram restoration to adapt to various types of input signals



and to separate the target signal robustly. The robustness of the proposed method
is confirmed by experimental evaluations. Finally, I summarize the contributions

of this thesis and provide suggestions for future work in Sect. Bl



2. Conventional Signal Separation Methods

2.1 Introduction

In this section, I describe conventional music signal separation methods and their
problems. In recent years, many types of signal separation methods have been
proposed and studied. These methods are roughly classified into single-channel
and multichannel signal separation algorithms. The former method attempts the
underdetermined separation using some constraints derived from the property
of the target signal. The latter method uses a spatial cue, which is obtained as
difference between channels, as a directional information and separates the target
signals. Then, in this section, I review commonly used signal separation methods,
PSNMF, Directional clustering, and Multichannel NMF'.
First, I outline conventional single-channel signal separation methods in Sect.

Next, I give a brief review of multichannel signal separation methods and its prob-

lems in Sect. 2.3l Finally, Sect. 2.4l concludes this section.

2.2 Conventional single-channel signal separation methods
2.2.1 Overview of NMF

NMF is a type of sparse representation algorithm that decomposes a nonnegative

matrix into two nonnegative matrices as
X~VW, (1)

where X (€ RY ") is an observed nonnegative matrix, which is an amplitude (or
a power) spectrogram for applying NMF to the acoustic signal; V(e RY*") is
often called the basis matriz, which includes bases (frequently-appearing spectral
patterns in X') as column vectors; and W (e RZ:Y) is often called the activation
matrixz, which involves activation information of each basis of V. In addition, M
and N are the numbers of rows and columns of X, and D is the number of bases
of V. Figure[d depicts the decomposition model of NMF, where the number of
bases D equals two. The basis matrix includes two types of spectral patterns
as the bases to represent the observed matrix using time varying gains in the

activation matrix. In the decomposition of NMF, a cost function is defined to
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Figure 3. Decomposition model of simple NMF.

optimize the variables V' and W using an arbitrary divergence between X and

VW. The following equation represents the cost function of NMF":
Inwr = D(X[|[VW), (2)

where D(-||-) is an arbitrary distance function, e.g., Itakura-Saito divergence (IS-
divergence), generalized Kullback-Leibler divergence (KL-divergence), and Eu-
clidean distance (EUC-distance). In this study, I use the following generalized

divergence called §-divergence [32] in the cost function:

( b’B a@. b-ja.ﬂ,_l
1, ,] 77,
= L b (BE Ry,
bi
Ds(BllA) = {bm‘ 10gf+ i — bm} B=1 (3)
i, b
bi bi
Z{ = —log ”—1} (8=0)

where A(€ R™’) and B(€ R"/) are matrices whose entries are a;; and b, ;,
respectively. This divergence is a family of cost functions parameterized by a
single shape parameter § that takes IS-divergence, KL-divergence, and EUC-
distance as special cases (5 = 0,1, and 2, respectively) as shown in Figs. EHSl
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Figure 8. Variation of -divergence function when g = 4.

The multiplicative update rules for V- and W that minimize the cost function

based on S-divergence are given by [33]

- (8)
}:nwmmuum<§:dundw¢nf’2>w a

Zn W n (Zd Um,dwd,n)ﬁ_l

_9\ ¥(B)
Y VmdTmn (D g Unttan)” 2)

Zm Um,d (Zd Um,dwd,n>ﬁ_1

where 2., 1, Uy a, and wg, are the nonnegative entries of matrices X, V', and W,

Um,d — Um,d (

()

W n — W n <

respectively. In addition, ¢(8) is given by

(

1
oy <
o) =141 (1<p<2). (6)
1
CED

We can optimize V' and W by some iterations of these update rules. The con-

vergence of these update rules is theoretically proven for any real-valued f.

11
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2.2.2 SNMF and PSNMF

The signal separation using NMF is achieved by extracting only the target spec-
tral bases. However, such unsupervised approaches have difficultly in clustering
the decomposed spectral patterns into a specific target instruments. Further-
more, each basis may be forced to include a multi-instrumental spectral pattern.
To solve this problem, SNMF [20] and its improved method, PSNMF, have been
proposed [21], 22]. These supervised scheme consists of two processes, namely, a
priori training and observed signal separation as shown in Fig.

In SNMF, as the supervision, a priori spectral patterns (bases) should be
trained in advance to achieve signal separation. Hereafter, we assume that we
can obtain specific solo-played instrumental sounds, which is the target of the

separation task. The trained bases are constructed by NMF as

}/target = FQ7 <7)

where Yiaget(€ R%7) is an amplitude spectrogram of the specific instrumental

signal for training, F'(€ R?;") is a nonnegative matrix that involves bases of the

12



target signal as column vectors, and Q(€ RY ") is a nonnegative matrix that
corresponds to the activation of each basis of F'. In addition, €2 is the number
of frequency bins, T is the number of frames of the training signal, and K is
the number of bases. Therefore, the basis matrix F' constructed by () is the
supervision of the target instrumental spectra.

The following equation represents the decomposition model in separation pro-

cess with trained supervision F":
Y ~FG+ HU, (8)

where Y (€ R?;") is an observed spectrogram, G(€ RX<") is an activation matrix
that corresponds to F', H (€ R%:") is the residual spectral patterns that cannot be
expressed by F'G, and U (€ RZ;") is an activation matrix that corresponds to H.
Moreover, T' is the number of frames of the observed signal and L is the number
of bases of H. In SNMF, the matrices G, H, and U are optimized under the
condition that F'is known in advance. Hence, ideally, F'G represents the target
instrumental components, and HU represents other different components from

the target sounds after the decomposition. The cost function for (8] is defined as
Tsnmp = Dy (YHFG + HU) . (9)

Also, the update rules for (@) are given by

Branmr—2\ PONME)
w,l w,l B —1 )
Zt ulatzwﬂf

_9\ ¥(BNMF)
Gt < ¢ 3 fokthot2O3"
k.t k.t 1 ’
S Fod 2

9\ ¥(Bnmr)

Zw hw,lyw,tzgf\iMF

Urg = U Bymr—1 ? (12>
Zw hw7lZw,t

where Yo+, fuks Grt, Pwy, and v, are the nonnegative entries of the matrices Y,
F., G, H, and U, respectively, and

Zut = Z fw,kgk,t + Z hw,lul,t~ (13)
k l

13



However, this SNMF incurs a risk of degrading the separation performance
owing to the simultaneous generation of similar spectral patterns in the supervised
basis matrix F' and other basis matrix H (referred to as basis sharing problem).
This is because the cost function in SNMF is defined as the divergence between
the observed and reconstructed matrices, and unique decomposition is not guar-
anteed. To solve this problem, PSNMF has been proposed [21, 22]. PSNMF
employs a penalty term in the cost function to force the other bases to become
as different as possible from the supervised bases.

The cost function of PSNMF with orthogonality penalty is defined as follows:
JPSNMF1 :IDﬁNMF(YHFG—i_HU)+H1HFTHHI2?N (14)

where the conditions ) f,r =1and ) h,; =1 are applied, p; is a weighting
parameter for the penalty term, and || - ||g indicates the Frobenius norm. The
minimization of the second term in (I4]) corresponds to the maximization of
orthogonality between F' and H. The update rule for H, which minimizes the
cost function (I4]), is given by

_ e(BNME)
S Yooty 2
hw,l < th B —1 5 3 . (15)
Do UiZy 201 D fuk Doy fur ke

The update rules for G and U are the same as (II]) and (I2).

Also, maximum-divergence penalty, which maximizes all divergence combi-

nations between the supervised bases in F' and the other bases in H, has been
proposed as another means of preventing the basis sharing problem. The cost

function of PSNMF with maximum-divergence penalty is defined as follows:

1
Jpsnmir2 = Doy (Y| FG + HU) + 1z exp <—)\— Z Dg,, (fw,thw,l)) , (16)

o lw

where o and Ay, are the weighting and sensitivity parameters, respectively. Here,
exponentiation is applied to make the penalty term nonnegative.

The update rule for H, which minimizes the cost function (I6), is given by

_9 1 o(BNmF)

>\m Zt yw,tul,tzgl,\;ﬁMF + ILLthJ,l Cﬁm

hw,l < hw,l B —1 B —2 ) (17)
)\Hl Zt ul,tzw,t + MQth Cﬁm Zk fw7k

14



where

C/Bm = exp <_/\1 Z Dﬁm (fw,k”hw,l>> . (18)

M g lw

The update rules for G and U are the same as (I1l) and (I2).

By imposing these penalty terms on the cost function, we can prevent the
basis sharing problem and separate the target signal with high accuracy. The
separation performance of PSNMF with orthogonality penalty and PSNMF with
maximum-divergence penalty are almost the same [22]. In this thesis, hereafter,
I use the orthogonality penalty and its update rules.

PSNMF can extract the target signal to some extent, particularly in the case of
a small number of sources. However, for the case of a mixture consisting of many
sources, such as more realistic musical tunes, the source extraction performance

is markedly degraded because of the existence of instruments with similar timbre.

2.3 Conventional multichannel signal separation methods
2.3.1 Directional clustering

Decomposition methods employing directional information for the multichannel
signal have also been proposed as unsupervised separation techniques [20, 27,
28]. These methods quantize directional information via time-frequency binary
masking under the assumption that the sources are completely sparse (double
disjoint) in the time-frequency domain. Figure [[0lshows the separation algorithm
of directional clustering. The target source in the center direction is separated
by hard clustering method, which corresponds to the binary masking in the time-
frequency domain.

Such directional clustering works well, even in an underdetermined situation
where the number of sources is greater than that of inputs. However, there is an
inherent problem that sources located in the same direction cannot be separated
using the directional information. Furthermore, the extracted signal is likely to

be distorted because of the effect of binary masking.
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2.3.2 Hybrid method of directional clustering and PSNMF

To separate the sources in the same direction, a hybrid method that concatenates
PSNMF after directional clustering has been proposed [29]. Figure [l indicates
the signal flow of the hybrid method. This hybrid method can effectively extract
the target instrument because the directionally clustered signal contains only few
instruments. Moreover, the residual interfering signal in the same direction can
be removed by PSNMF.

However, this hybrid method has a problem that the extracted signal suffers
from the generation of considerable distortion. This is due to the binary masking
in directional clustering. The signal in the target direction, which is obtained
by directional clustering, has many spectral chasms because the assumption of
sparseness in the time-frequency domain does not always hold completely. In
other words, the resolution of the spectrogram clustered as the target-direction
component is degraded by time-frequency binary masking. Figure[I2] shows an
example of the spectrum of a signal separated by directional clustering. The
obtained spectrum has many chasms owing to the binary masking. These spectral
losses may deteriorate the performance of separation because PSNMF is forced

to incorrectly fit these spectral chasms using supervised bases.

2.3.3 Multichannel NMF

Multichannel NMF, which is a natural extension of NMF for a stereo or mul-
tichannel music signal, has been proposed as an unsupervised signal separation
method [24], 25]. These algorithms employ Hermitian positive definite matrix that
models the spatial property of each NMF basis and each frequency bin. There-
fore, multichannel NMF utilizes a frequency-wise transfer function between signal
source and microphone as a cue for basis clustering. However, such unsupervised
separation is a difficult problem, even if the signal has multichannel components,
because the decomposition is underspecified. Hence, these algorithms involve

strong dependence on initial values and lack robustness.
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2.4 Conclusion

In this section, conventional single-channel signal separation methods were de-
noted. Next, conventional multichannel signal separation methods were reviewed.
Since each method has its own drawback, I propose a new hybrid method of di-
rectional clustering and a new SNMF with spectrogram restoration in the next

section to cope with the problems effectively.
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3. SNMF with Spectrogram Restoration and Its
Hybrid Method

3.1 Introduction

In the previous section, I described two types of conventional signal separation
methods and the problems of each method. To solve these problems, in this
section, I propose a new algorithm of SNMF with spectrogram restoration and
its hybrid method as a multichannel signal separation method.

First, I describe a strategy and a derivation of update rules for SNMF with
spectrogram restoration in Sect.[3.2l Second, theoretical analysis of basis extrap-
olation ability based on generation model is shown in Sect. 3.3l Third, I compare
separation performance of the proposed method and the other conventional meth-
ods via some experiments in Sect. 3.4l for a validation of the proposed method.
Finally, Sect. concludes this section.

3.2 SNMF with spectrogram restoration
3.2.1 Motivation and strategy

The separated signal by the conventional hybrid method described in Sect.
suffers from the generation of considerable distortion owing to the binary masking
in directional clustering. To solve this problem, in this section, I propose a new
SNMF with spectrogram restoration as an alternative to the conventional PSNMF
for the hybrid method.

Figure[13] shows a signal flow of the proposed hybrid method that includes
SNMF with spectrogram restoration. The algorithm of SNMF with spectrogram
restoration utilizes index information determined in directional clustering. For
example, if the target instrument is localized in the center cluster along with
the interference, SNMF is only applied to the existing center components using
index information (active binary mask). Therefore, the spectrogram of the target
instrument is reconstructed using more matched bases because spectral chasms
are treated as unseen, and these chasms have no impact on the cost function in

SNMF with spectrogram restoration. In addition, the components of the target
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instrument lost after directional clustering can be extrapolated using the super-
vised bases. In other words, the deteriorated target spectrogram is recovered with
the spectrogram restoration by the supervised basis extrapolation.

To illustrate the separation mechanism step by step, Fig.[I4] (a) shows the
configuration of source components in the stereo signal, (b) shows the separated
components that are clustered around the center direction by directional clus-
tering, and (c) shows the separated target component obtained by SNMF with
spectrogram restoration. In Fig.[I4] (a), the source components are distributed
in all directions with some overlapping. After directional clustering (Fig.[I4] (b)),
the center sources lose some of their components (i.e., the tails on both sides),
and the other source components leak in the center cluster. After SNMF with
spectrogram restoration, the proposed algorithm restores the lost components

using the supervised bases (Fig.[I4 (c)).
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However, this basis extrapolation includes an underlying problem. If the time-
frequency spectra are almost unseen in the spectrogram, which means that the
indexes are almost zero, a large extrapolation error may occur. Then, incorrect
bases are chosen and fitted to a small number of spectral grids by incorrectly
modifying the activation matrix G. In the worst case, the activation matrix G
contains very large values and the extracted signal is overloaded. To avoid this,
we should add a new penalty term in the cost function, as described in the next

section.

3.2.2 Cost function and update rules

In this section, we derive the update rules of SNMF with spectrogram restoration
based on -divergence-based. Here, the index matrix I(€ R}}) is obtained from
the binary masking preceding the directional clustering. This index matrix has
specific entries of unity or zero, which indicates whether or not each grid of the
spectrogram belongs to the target directional cluster. The cost function in SNMF

with spectrogram restoration is defined using the index matrix I as

T(©) = i D Wt | Frok G + 3 Pusitin)

w,t

FAN D, O ekne) + il FTHR, (19)
w,t

where © = {G, H,U} is the set of objective variables, i, is a entry of the index
matrix I, A and p are the weighting parameters for each term, and * represents the
binary complement of each entry in the index matrix. The first term represents
the main cost of separation in SNMF. Since the divergence Dpgy,,..(+]|-) is only
defined in grids whose index is one, the chasms in the spectrogram are ignored in
this SNMF decomposition. The second term forces the minimization of the value
of >, fukgk: Hence, the supervised bases are chosen so as to minimize the scale
of F'G in proportion to the number of zeros in the index matrix I in each frame
to avoid the extrapolation error. In other words, this penalty term regulates the
extrapolation. In addition, the third penalty term has the same property as that

in the cost function of conventional PSNMF (I4]).
The update rules based on (I9) are obtained by the auxiliary function ap-

proach, similarly to [33]. Here, we can rewrite the cost function (I9) using -
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divergence as

BNMF BNMF ﬁNMF 1
; Yot 2wt ywt w,t
N=2 + : 21
1 %;Z ’ (BNMF (Bwr — 1) Buwr Prwr — 1 ) (21)

Breg
Ty = ZE(Zk fgkgk,t) 7 (22)
wt reg

T3 = Z (Z fw,khw,l> : (23)

First, I define the upper bound function for J;. The second term of [J; is
convex for Symr > 1 and concave for Syvr < 1, and the third term is convex for
Bnmvr > 2 and concave for Syyr < 2. Applying Jensen’s inequality to the convex
function and the tangent line inequality to the concave function, we can define the
upper bound function J;" using auxiliary variables Otk > 0, Yo =0, m >0,
ne > 0, and o, that satisfy >, awix=1, > Ywry =1, and 1+ =1 as

T < ‘71 le ﬁNMF : (24)
where
N(ﬁNMF — Yoo M(ﬂNMF 1) (ﬁNMF < 1)
PUME) = § pPar) _ gy g Par D) (1< Bauar < 2) » (25)
M‘(Uﬁﬂlt\TMF) Yoot N(ﬁNMF 1) (BNMF > 2)
1 fw KOkt BNMF hy, 1 BNMF
M(ﬁNMF _ o, ( kYEk, + y LU, ’
BNME ; kT Qo t kT ;7 2 Voo, t.172
(26)
BNMF
N(BNMF) O'ﬁNMF ! (Zwﬂg - O'wﬂg) + it . (27)
BNMF
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The equality in (24 holds if and only if the auxiliary variables are set as follows:

JookGr,t
Ayt k = é’ (28)
Zk/ fw,k’gk’,t
hw Uy ¢
Yw,t,l = é, 29
! Zl’ hw,l/ul% ( )
n = Dow Jor g (30)
Zk, fw,k/gk/ﬂf + Zl/ th//U,ll’t’
’ h,w / !/
Zl pup (31)

"o Ek/ fw,k’gk’,t + Zl/ hwyl/ullyt’
Ot = Z Jo G + Z o pup ¢ (32)
k' v

Second, I define the upper bound function for J5. This term is convex for
Breg > 1 and concave for B, < 1. Similarly to (24)-(27), we can define the upper

bound function j;r using auxiliary variables o, and p,,; as

T < Ty = twaS, (33)
w,t
where

:8reg
/Ow,t

3 (Breg < 1)
S(Breg) — reg
w,t 1 f g /Breg .
w,kYk,t
Zk Atk < > (1 S Breg)

re, _1
Pﬁ,tg (Zk fo kGt — pw,t) +

(34)

reg Qu otk

The equality in ([B3]) holds if and only if the auxiliary variables are set as (28]

and as follows:
Puwt = Z fw7k’gk’,t- (35)
k/

Third, I define the upper bound function for [J; using auxiliary variables
Ok 1w > 0 that satisfy Zw Oriw =1 as
2 72

h
j3 < j3+ = Z M (36)

0
kel k,lw
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The equality in (B6) holds if and only if the auxiliary variables are set as follows:
5ot = fophwt
T Y Jurkhu
Finally, using ([24)), ([83]), and (Bd), we can define the upper bound function
JHO,0) as

(37)

JN0,0) =T + T3 + nJs", (38)

where © is the set of auxiliary variables. The update rules with respect to each

variable are determined by setting the gradient to zero.

From 0J*(©,0)/dg;., = 0, we obtain

Z oyt (VﬁNMF(@’ é) — Wi (67 é)) + A‘Xﬂreg(@7 é) =0, (39)
where
A T (Bamr < 1)
VﬁNMF(@’ 6) - ﬁNMF 1 1-BNmrF  gBNMEF ’ (40)
Ikt (e o,t1) Tk (1 < Bxwur)
B—2 2—BnmE gBNmr—1
A w oo w <2
Wi (0,6) = Y ,tg,;t ( j M) Tk (Bxmr ), (41)
Yot Oy Juork (2 < Brmr)
Z Zw tpgrig lfw,k (6reg < 1)
Xﬁreg (@7 (':')) pr— . fw kgk . Breg_l ) (42)
Zw iw,tfw,k ’ ’ (1 S 6reg)
Atk
By solving (B9) for g, under the nonnegativity, we obtain
/ 1
Z oo 1Yot (@kw tnl)Q—ﬁNMF f/BNMF*]- 2-BNMF
Z Zw 6NMF lfw i + )\Xﬁreg
(Bamr < 1)

. 1 1
Z b 1Yot (ak,w,tnl) —BNMF fﬁNMF glfliMF

Grt = Dt tngliMF " (g ) Tk NME LA, . (43)
(1 < Bnur <2)
ORI e e
. BNMF—1 1-BNMF £BNMF A\X
Z (2% tgk:t (ak7w,tn1) fw,k; + ﬂreg
(2 < Bywmr)
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Then we can obtain the update rule of g, by substituting ([28), (30), (32), and
(38 into (3) as follows:

) ) w(BNMF)
Ght < On Zw Zw,tyw,tfw,kzglijF
it it . 1 -— oo — 1 :
Zw Zw,tfw,kzglthF + A Zw 1w,tfw,k (Zk/ fw,k’gk’,t)/g s
(44)
The update rules of the other variables are similarly obtained as follows:
. ) o(BNMF)
ot 2 fcthostns 2™ (45)
w,l w,l K — )
S ot 20 A 203 fk Do fur i

. Brmr—2'\ #(ANMF)

1 he iz
Ul,t — ul’t Zw wityw,t w,lB w,t — ] (46)

Zw @w,thw,lzwi\l]tMF

The convergence of these update rules is theoretically proven for any real-valued

ﬁNMF and Breg .

3.3 Theoretical analysis of basis extrapolation based on

generation model
3.3.1 Optimal divergence for basis extrapolation and generation model

The proposed method attempts both signal separation and basis extrapolation
using the supervised bases F'. In previous studies, the analysis of optimal diver-
gence only for signal separation has been discussed [21], 22 [31]. However, there
has been no discussion on the optimal divergence for the extrapolation techniques
using NMF. In this section, I analyze the extrapolation ability based on a sta-
tistical generation model of the observed data Y, and determine the optimal
divergence for basis extrapolation w.r.t. various Sxur and Sy values.

In NMF decomposition, the minimization of (-divergence between Y and
F'G corresponds to a log-likelihood maximization under the assumption of the
generation model of Y for each Oyur [34]. The minimization of Day,p (Y t]|V)

is equivalent to the maximization of exp(—Dgyp (Y t||?)). Here, we can rewrite

27



eXp(_DﬁNMF(yw,t 79)) as
( Yot Yot
Texp —T’ +1 (Bxmr = 0)
’[96 Yuw,t
Yon exp (—) (Brmr = 1)
w,t
eXp (_DﬁNMF (yw,tnﬁ)) - 2 ) (47)
(yw,t - 19)
exXp | — 5 (Brnmr = 2)
ﬁﬁNMF—lyw . YBNMEF
ex —— >3
L P Pavr — 1 Bamr (B 2 3)

where ¥ = >, f. xgk: represents a parameter of the maximum likelihood esti-
mation. A probability density function (p.d.f.) that corresponds to (7)) is given
by

L [ (Brvir = 0)
o €xXp o NMF =
B () (e = 1)
(&) — =
B T (yw’t 1) XPp 2 NMF
Yot ~ D (Yuort) = 1 (Yoot — 194)2 ) (48)
e —9
V213 P ( 205 > (P =2)
9 Bnvr—1 "
C exp B Yt (Bamr > 3)
\ Bamr — 1

where ['(+) is a gamma function. These generation models of Sxyr = 0, 1, and
2 are equivalent to exponential distribution, Poisson distribution, and Gaussian
distribution, respectively. The generation models for Sxyr > 3 correspond to a
distribution in which the probability increases exponentially with increasing ., ;.
Strictly, this distribution is not a p.d.f. because it diverges when y,; increases.
Thus, we set the upper bound of ¥, ; to a constant M and define the corresponding

p.d.f. with normalization coefficient C,,, which is given by

C= 195NMF (BNMF — 1) exp —C -1 . (49)

Bamp — 1™

Using ([48]), we can generate the most probable spectrogram for each Snyr.
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3.3.2 Simulation conditions

To analyze the net extrapolation ability, I simulate the spectrogram restoration
task. In this simulation, I generated random i.i.d. values, which obey the cor-
responding generation model ([A8]) for each fnur, as the observed data matrix
Y. I compared fnvr = 0,1,2,3,4 and free = 0,1,2,3, and I used the same
divergence Onyr in the training and separation processes. The size of this data
matrix was set to {2 = 5000 and 7" = 200. I set the parameters of each p.d.f. to
% =1, ¥y =5, ¥3 =10, ¥4 = 50, ¥5 = 2, and C,, = 15. These parameters
are determined so as to generate the nonnegative random i.i.d. values that obey
each corresponding generation model. Note that the parameters 6;—05 simply
determine the scales of the input random variables, and basically can be set to
arbitrary value without loss of generality. In addition, I used two types of data-
missing patterns I, in which 75% or 98% of the grids were missing in a uniform
manner, and the missing data I oY imitated the binary-masking procedure. The
supervised bases F' were obtained by training using the same data matrix Y,
namely, Yiaeet = Y in Fig.[0l The number of supervised bases, K, was 100,
which is the half size of T', and the number of other bases, L, was 30. Therefore,
the task was to reconstruct original Y from the observations with missing data,

I oY using the trained bases.

3.3.3 Simulation results and discussion

[ used sources-to-artifacts ratio (SAR) defined in [35] as the accuracy of the

extrapolation. Here, the estimated signal 5 () is defined as

'§ (t) - Starget (t) + Sinterf (t) + Sartif (t) ) (50)

where Starget () is the allowable deformation of the target source, Siptert () is the
allowable deformation of the sources that account for the interferences of the
undesired sources, and S..f (t) is an artifact term that may correspond to the
artifacts of the separation algorithm, such as musical noise, or simply undesirable
deformation induced by the nonlinear property of the separation algorithm. The
formulas for SAR is defined as

{Starget (t) + Einterf (t> }2

SAR = 101log,, 2t S eomt (0
¢ Carti

(51)
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Therefore, SAR indicates the absence of artificial distortion.

Figure [[5] shows the SAR result for each divergence and regularization. From
this result, it is confirmed that a higher Axyr provides better basis extrapo-
lation regardless of the type of regularization (). In NMF decomposition,
if we set Onur to a large value, the trained bases tend to become anti-sparse
(smooth). In contrast, if Symr is close to zero, the trained bases become more
sparsity-aware, and this property is suitable for normal NMF-based music source
separation because of the inherent sparsity of music spectrograms (e.g., Sxur = 1
is recommended in [21} 22, 31]). However, for basis extrapolation, sparse bases
are not suitable because it is difficult to extrapolate them only from the observ-
able data. Therefore, we speculate that the optimal divergence in SNMF with
spectrogram restoration, which attempts to fit the trained bases using spectral
components except for chasms, is shifted to Sxyyr > 1 rather than KL-divergence
(Bamr = 1) because of the trade-off between separation and extrapolation abili-
ties, as illustrated in Fig.[I6 This issue will be confirmed experimentally in the

next section.
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Figure 15. Extrapolation abilities for (a) 75%-binary-masked data and (b) 98%-

binary-masked data.
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performance is highest when Snyr > 1.

3.4 Comparison between proposed hybrid method and con-

ventional methods
3.4.1 Experimental conditions

I conducted objective evaluation to confirm the effectiveness of the proposed hy-
brid method described in the previous section. In this experiment, I compared
five methods, namely, simple directional clustering [26], Multichannel NMF based
on IS-divergence [25], PSNMF [211, 22], conventional hybrid method that concate-
nates PSNMF after directional clustering [29], and proposed hybrid method in-

cluding SNMF with spectrogram restoration after directional clustering, in terms
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Table 1. Compositions of musical instruments
Dataset Melody 1 Melody 2 Midrange Bass
C1 Oboe Flute Piano Trombone
C2 Trumpet Violin ~ Harpsichord  Fagotto
C3 Horn Clarinet Piano Cello

of their ability to separate music artificial and real-recorded signals. Also, I com-
pared some evaluation scores with various Syur and B, for PSNME and the
proposed hybrid method by setting five divergences and regularizations, namely,
B =0,1,2,3, and 4. T used the same divergence (fxur) in the training and sep-
aration processes for PSNMF and proposed SNMF with spectrogram restoration
in the proposed hybrid method. In this experiment, I conducted two experiments
to consider artificial signal and real-recorded signal cases. I used stereo signals
containing four melody parts (depicted in Fig. [I7)) with three compositions (C1-
C3) of instruments shown in Table [l These signals were artificially generated
by a MIDI synthesizer. In particular, these stereo signals were mixed down to
a monaural format only when we evaluate the separation accuracy of PSNMF
because PSNMF is a separation method for a monaural input signal.

In the artificial signal case, the observed signals Y were produced by mixing
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Figure 18. Panning of four sources with sine law used in artificial signal case
experiment. Numbered black circles represent locations of instruments in stereo
format. For example, if target is Ob., No.1 is set to Ob. and Nos.2, 3, and 4 are
combinations of FL., Th., and Pf.

four sources with the same power. The observed signal contained one source in
the left and right directions and two sources in the center direction based on a sine
law (see Fig.[I8). The target instrument is always located in the center direction
along with another interfering instrument, and we prepared two patterns in which
the left and right sources are located at # = 15° and 45°. In addition, I used the
same MIDI sounds of the target instruments as supervision for a priori training.
The training sounds contained two octave notes that cover all notes of the target
signal in the observed signal. The sampling frequency of all signals was 44.1 kHz.
The spectrograms were computed using a 92-ms-long rectangular window with
a 46-ms overlap shift. The number of iterations for the training and separation
were 500. Moreover, the number of clusters used in directional clustering was 3,
the number of a priori bases, K, was 100, and the number of bases for matrix H,

H, was 30. The weighting parameters A and g were empirically determined.
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Figure 19. Geometry of the loudspeaker and binaural microphone (dummy head).
Numbered black circles represent locations of loudspeakers. Target source and

supervision sound is always located in No.1 position.

In the real-recorded signal case, I recorded each instrumental solo signal and
the supervision sound, which are the same as those in the artificial case, in an
experimental room whose reverberation time was 200 ms. A geometry of the
loudspeaker and binaural microphone NEUMANN KU-100 is shown in Fig. 19l
The target source and the supervision sound is always located in No.1 position in
Fig.[I9 The observed signal Y was produced by mixing these recorded signals as
the same power. Other conditions were the same as those of the artificial signal

case.
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3.4.2 Experimental results

I used the signal-to-distortion ratio (SDR), source-to-interference ratio (SIR), and
SAR defined in [35] as the evaluation scores. The formulas for SDR and SIR are
defined as

Zt Starget(t>2
> i {eimtert (t) + €artit (t)}z ,

2 Starger (1)
SIR = 10log,, &——=5- 33
S10 Zt Cinterf (t)Q ( )

SDR indicates the quality of the separated target sound, and SIR indicates the

degree of separation between the target and other sounds. Therefore, SDR indi-
cates the total evaluation score that involves SIR and SAR.

First, I compare the variation of separation performance for various fSxyr and
Breg- Figures 20l and 21l show the average SDR, SIR, and SAR of the proposed
hybrid method for each divergence (Symr) and each regularization (f,ee) in the
artificial signal case with 6§ = 15° and 6 = 45°, where the four instruments are
shuffled with 12 combinations in each of compositions C1-C3. Therefore, these
results are the averages of 36 input signal patterns. Also, Fig. 22lshow the average
SDR, SIR, and SAR in the real-recorded signal case. From the SDRs in Figs.
20, 21, and 2], the regularization with KL-divergence (S, = 1) is slightly better
than the other divergences but the difference is not significant, except for the
case of B = 0. In addition, we can confirm that the EUC-distance-based cost
function (Bymr = 2) is an optimal divergence for the proposed hybrid method
including SNMF with spectrogram restoration.

Next, I compare the separation performance of the proposed hybrid method
with the other conventional methods, where I compare the evaluation scores of the
proposed hybrid method only when 3., = 1 because this KL-divergence-based
regularization achieves the highest separation performance. Figures23] and
show the average SDR, SIR, and SAR for each method in the artificial signal
case with 6 = 15° and 6 = 45°. Also, Fig. 28 shows the average SDR, SIR,
and SAR in the real-recorded signal case. Similarly to the previous results, these
results are the averages of 36 input signal patterns, which contain all compositions

and instrumental combinations.
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From the SDRs in Figs. 23] 24, and 25l we can confirm that directional cluster-
ing does not have sufficient performance because this method cannot discriminate
the sources in the same direction. Multichannel NMF also cannot achieve the suf-
ficient separation because this method strongly depends on the initial value and
lack robustness. In contrast, the methods using SNMF can give better results
and the proposed hybrid method with SNMF with spectrogram restoration out-
performs all other methods in both artificial and real-recorded signal cases. In
addition, the conventional hybrid method is inferior to PSNMF when Gyyr < 1
whereas this hybrid method utilizes both directional clustering and PSNMF. This
is because the conventional hybrid method is affected by the spectral chasms and
cannot reconstruct such lost components. Furthermore, we can confirm that the
EUC-distance-based cost function (Sxyr = 2) is an optimal divergence for the
proposed hybrid method, whereas KL-divergence (Sxyr = 1) is the best diver-
gence even for conventional PSNMF [21], 22] B1]. This marked shift of the optimal
divergence in SNMF with spectrogram restoration is due to the trade-off between

the separation and extrapolation abilities, as predicted in Sect. B3l
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Figure 20. Average scores with various divergences and regularizations in artificial
signal case when 6 = 15°: (a) shows SDR, (b) shows SIR, and (c) shows SAR for
proposed methods.
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Figure 21. Average scores with various divergences and regularizations in artificial
signal case when 6 = 45°: (a) shows SDR, (b) shows SIR, and (c) shows SAR for

conventional and proposed methods.
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Figure 22. Average scores with various divergences and regularizations in real-
recorded signal case: (a) shows SDR, (b) shows SIR, and (c) shows SAR for

conventional and proposed methods.
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Figure 23. Average scores in artificial signal case when 6 = 15°: (a) shows SDR,

(b) shows SIR, and (c) shows SAR for conventional and proposed methods.
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Figure 24. Average scores in artificial signal case when 6 = 45°: (a) shows SDR,

(b) shows SIR, and (c) shows SAR for conventional and proposed methods.
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Figure 25. Average scores in real-recorded signal case: (a) shows SDR, (b) shows
SIR, and (c) shows SAR for conventional and proposed methods.
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3.5 Conclusion

In this section, first, I derived the update rules of SNMF with spectrogram restora-
tion and proposed hybrid method that concatenates SNMF with spectrogram
restoration after directional clustering. This SNMF attempts both signal separa-
tion and basis extrapolation simultaneously.

Next, I analyzed the net extrapolation ability based on generation models
of each divergence. This analysis revealed the mechanism of marked shift of
optimal divergence in SNMF with spectrogram restoration and trade-off between
separation and extrapolation abilities owing to the difference of sparseness in each
divergence.

Finally, the effectiveness of the proposed hybrid method was confirmed by
the experiments for artificial and real-recorded signals. The results showed the
marked shift of the optimal divergence for the proposed hybrid method because

of the trade-off between separation and extrapolation abilities.
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4. Optimal Divergence Diversity for SNMF with

spectrogram restoration

4.1 Introduction

In the previous section, I revealed the mechanism of optimal divergence shift in the
SNMEF methods. This divergence shift is due to the trade-off between separation
and extrapolation abilities. The optimal divergence for SNMF with spectrogram
restoration depends on the rate of spectral chasms in each time frame of the
spectrogram obtained by preceding directional clustering. Therefore, the optimal
divergence temporally fluctuates because the spatial condition is not consistent
in the general music signal, and the divergence of SNMF should be changed in
each time frame automatically. To solve this problem, in this section, I propose
a new scheme for frame-wise divergence selection to separate the target signal
using optimal divergence.

First, I describe about a new scheme of optimal divergence diversity and
derive update rules of the proposed method in Sect.[4.2l Second, I conduct an
experiment to compare separation performance of the proposed method with
divergence diversity and the divergence-fixed hybrid method in Sect. 4.3l Finally,

Sect. [4.4] concludes this section.

4.2 SNMF with spectrogram restoration based on multi-

divergence
4.2.1 Divergence dependency on local chasms condition

The optimal divergence for SNMF with spectrogram restoration depends on the
rate of spectral chasms in each time frame of the spectrogram obtained by pre-
ceding directional clustering because of the trade-off between separation and ex-
trapolation abilities. If there are many chasms in a frame of the binary-masked
spectrogram, SNMF is preferred to have high extrapolation ability. In contrast,
if the rate of chasms is low value, the separation ability is required rather than
the extrapolation. Therefore, it is expected that EUC-distance should be used

in the frames that have many chasms, and KL-divergence should be used in the
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Figure 26. Divergence diversity algorithm of proposed method.

other frames. To improve total separation performance of SNMF with spectro-
gram restoration for any types of input signals, we propose a new frame-wise

divergence switching method as described in the next section.

4.2.2 Cost function and update rules

Considering the above-mentioned divergence dependency on the local chasm con-
dition, we propose to switch the divergence in each frame of the spectrogram ac-
cording to the rate of chasms in each frame, 7, and a threshold value 7 (0<7<1),
where the rate of chasms r; can be calculated from the index matrix I. Figure
depicts an algorithm of the frame-wise divergence switching. This divergence

switching method is implemented by switching the cost function in each frame,
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where FKL) (€ R%) and F(EVO) (€ R%:KX) are the supervised basis matrices trained
in advance using KL-divergence-based NMF and EUC-distance-based NMF, re-
spectively. Also, fS;L) and fLE’EkUC) are the entries of F(KY and F®EUC) - re-

spectively, u*) and A*) are the weighting parameters for each term, and % =

{KL,EUC}. The divergence is determined depending on r; and 7 in each frame.

Therefore, this method can be considered as a frame-wise diversity of the diver-

gence to achieve both of optimal separation and extrapolation.

The update rules based on (B4) is obtained by the auxiliary function approach.

Similarly to Sect.3.2.2 we can design the upper bound function J* using aux-
iliary variables C,g:?w > 0, /ffjik >0, Your > 0,61 >0, 69 >0, and §0(J*2 > 0 that
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The equality in (B9) holds if and only if the auxiliary variables are set as (29)
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and as follows:
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The update rules are obtained from the derivative of the upper bound function

(B8) w.r.t. each objective variable and substitution of the equality condition (67])—

(@), as
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where N, D+, and P, ; are given by
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In total, the update rules of proposed SNMF with frame-wise divergence diversity

are defined as (72))—(74).

4.3 Evaluation experiment
4.3.1 Experimental conditions

To confirm the effectiveness of the proposed hybrid method with divergence di-
versity, I compared five methods, namely, PSNMF [22] based on KL-divergence,
PSNMF based on EUC-distance, the hybrid method using SNMF with spec-
trogram restoration based on only EUC-distance, the hybrid method including
SNMF with spectrogram restoration based on only KL-divergence, and the pro-
posed hybrid method that switches the divergence to the optimal one framewisely.
In this experiment, I used stereo signals containing four melody parts (depicted in
Fig. 27)) with three compositions (C1-C3) of instruments shown in Table[Il Simi-
larly to Sect. B.4.1], these signals were artificially generated by a MIDI synthesizer,
and the observed signals Y were produced by mixing four sources with the same
power. Also, these stereo signals were mixed down to a monaural format only
when we evaluate the separation accuracy of PSNMF. The sources were mixed as
Fig.[I8, where the target source was always located in the center direction with
another interfering source.

I prepared four spatially different dataset patterns of the observed signals,
SP1-SP4, as shown in Table Pl In the hybrid method, many chasms were pro-

duced by directional clustering in the measures where § = 45° compared with
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Figure 27. Scores of each part. The observed signal consists of four measures.

Table 2. Spatial conditions of each dataset

Spatial Measure

pattern 1st 2nd 3rd 4th
SP1 0 =45° 0=0° 0=0° 60=0°
SP2 0=45° 6 =45° 0=0° 60=0°
SP3 60 =45° 6 =45° 6 =45° 6=0°
SP4 0=45° 0=45° 0=45° 0=45°

those of # = 0°. Therefore, we can expect that EUC-distance-based hybrid
method is suitable for SP4 rather than the dataset of SP1.

In addition, I used the same MIDI sounds of the target instruments as super-
vision for a priori training. The threshold value for the divergence diversity, 7,

was set to 20%. The other experimental conditions were the same as those in

Sect. B4.11

4.3.2 Experimental results

Figure 28 shows the average SDR, SIR, and SAR scores for each method and
each dataset pattern, where four instruments are shuffled with 12 combinations
in each of compositions C1-C3. Therefore, these results are the averages of 36 in-

put signals. In addition, the SDR scores of PSNMF are the same for any datasets
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because the input signals for PSNMF are mixed down to a monaural format.
From this result, KL-divergence-based hybrid method achieves high separation
accuracy for the dataset of spatial patterns SP1, SP2, and SP3 because these
signals do not have much spectral chasms. On the other hand, EUC-divergence-
based hybrid method achieves high separation accuracy for SP4. This dataset
has many spectral chasms because the signals are always mixed with a wide
panning (0 = 45°), which yields many chasms, and the extrapolation ability is
highly required. In addition, the proposed hybrid method with frame-wise diver-
gence diversity can always achieve better separation for any datasets regardless
of the condition whether many chasms exist or not. This is because the proposed
method provides the appropriate diversity of the divergence and can automati-

cally apply the optimal divergence to each time frame.
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Figure 28. Average scores of each method and each spatial condition.: (a) shows
SDR, (b) shows SIR, and (c¢) shows SAR for conventional and proposed methods.
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4.4 Conclusion

In this section, first, I proposed a new divergence selection method as a im-
provement scheme of SNMF with spectrogram restoration and its hybrid method
to separate the target signal using optimal divergence. The proposed method
switches the optimal divergence in each time frame using a threshold value for
the rate of the chasms to separate and extrapolate the target signal with high
accuracy.

Second, I derived the update rules of proposed SNMF with divergence diver-
sity. These update rules can switch the divergences framewisely and optimize the
variable matrices, simultaneously.

Finally, I conducted the evaluation experiment to confirm the efficacy of the
divergence diversity. Experimental results show that the proposed hybrid method

can always achieve high separation performance under any spatial conditions.

o4



5. Conclusion

5.1 Summary of thesis

In this thesis, I proposed a new multichannel signal separation method, i.e., a
hybrid method that concatenates SNMF with spectrogram restoration after di-
rectional clustering, which reconstructs the target components lost by preceding
binary masking. From theoretical analysis based on the generation model of the
signal, it was revealed that the optimal divergence in SNMF with spectrogram
restoration, which attempts to fit the trained bases using spectral components
except for the chasms, is shifted to an anti-sparse criterion rather than KL-
divergence because of the trade-off between separation and extrapolation abil-
ities. Based on this finding, I also proposed an improved hybrid method that
switches the divergence to the optimal one framewisely. According to the results
of the evaluation experiments with artificial and real-recorded signals, the pro-
posed method is advantageous to the conventional methods in terms of robustness
and separation performance.

In Sect. 8 T proposed a new SNMF with spectrogram restoration and its
hybrid method for multichannel signal separation. By utilizing the index infor-
mation generated from binary masking, the proposed SNMF regards the spectral
chasms as unseen observations and finally reconstructs the target signal compo-
nents via spectrum extrapolation using supervised bases. In other words, this
SNMF can be categorized as a inpainting-based method because the deteriorated
spectrogram resulting from the preceding binary masking can be recovered by
the supervised basis extrapolation. In addition, a regularization term is added
in the cost function to avoid extrapolation error. The theoretical analysis of the
basis extrapolation ability revealed the mechanism of the marked shift of optimal
divergence in SNMF with spectrogram restoration and the trade-off between sep-
aration and extrapolation abilities owing to the difference of sparseness in each
divergence. Furthermore, the effectiveness of the proposed hybrid method was
confirmed by the evaluation experiments with artificial and real-recorded signals.

In Section M| T proposed an improved hybrid method. This method switches
the divergence in each frame of the spectrogram according to the rate of chasms

in each frame and a threshold value. Therefore, this method can be considered
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as a frame-wise diversity of the divergence to achieve both optimal separation
and extrapolation. Experimental results show that the proposed hybrid method
with divergence diversity can always achieve high separation performance under

all spatial conditions.

5.2 Future work

The following points still remain to be investigated or clarified.

e [ have not analyzed other types of divergence, such as the divergence be-
tween KL-divergence and EUC-distance. I speculate that the optimal di-
vergence strictly depends on the balance between inherent sparseness of
the signal and the rate of spectral chasms generated by the preceding bi-
nary masking. Therefore, mathematical analysis of the relation between

the divergence and sparseness of the signal is an important future task.

e The proposed SNMF with spectrogram restoration can be used as a post-
filter for target source extraction because it reconstructs the target compo-
nents lost by the preceding process using supervision. For example, we can
iterate the proposed hybrid method to increase the extraction performance
of the target source. The separation accuracy of the iteration method using

SNMF with spectrogram restoration as a postfilter should be analyzed.
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