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Music Signal Separation Combining Directional

Clustering and Nonnegative Matrix

Factorization with Spectrogram Restoration ∗

Daichi Kitamura

Abstract

In this thesis, to address a music signal separation problem, I propose a new

hybrid method that concatenates directional clustering and supervised nonneg-

ative matrix factorization (NMF) with spectrogram restoration for the purpose

of the specific sound extraction from the multichannel music signal that consists

of multiple instrumental sounds. Recently, a main format for obtaining musical

tunes has become electronic data such as music files, which can be made available

over the Internet owing to progress in information technology. Hence, users can

easily obtain and edit music tunes, resulting in the active creation of new con-

tents. According to this background, music signal separation technologies have

much attention. Music signal separation is aimed to extract a specific target sig-

nal from music signals that contain multiple music instrumental sounds. Audio

remixing by the users, automatic music transcription, and musical instrument

education are one of the feasible music signal separation applications.

In the previous studies, music signal separation based on NMF has been a very

active area of the research. Various methods using NMF have been proposed, but

they remain many problems, e.g., poor convergence in update rules in NMF and

lack of robustness. To solve these problems, I propose a new supervised NMF

(SNMF) with spectrogram restoration and its hybrid method that concatenates

the proposed SNMF after directional clustering. Via extrapolation of supervised

spectral bases, this SNMF with spectrogram restoration attempts both target
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signal separation and reconstruction of the lost target components, which are

generated by preceding binary masking performed in directional clustering.

Next, I provide a theoretical analysis of basis extrapolation ability and reveal

the mechanism of marked shift of optimal divergence in SNMF with spectrogram

restoration and trade-off between separation and extrapolation abilities. Evalua-

tion experiment of the separation using artificial and real-recorded music signals

show the effectiveness of the proposed hybrid method.

Finally, based on the above-mentioned findings, I propose a new scheme for

frame-wise divergence selection in the proposed hybrid method to separate the

target signal using optimal multi-divergence. The results of an evaluation exper-

iment show that the proposed hybrid method with multi-divergence can always

achieve high performance under any spatial conditions, indicating the improve-

ment in robustness of the proposed method.

Keywords:

Music signal separation, Directional clustering, Spectrogram restoration, Non-

negative matrix factorization, Supervised method.
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スペクトログラム修復機能付き非負値行列因子分解と

方位クラスタリングを組み合わせた音楽信号分離 ∗

北村 大地

内容梗概

本論文では，複数の音源が多重に混合されたマルチチャネル音楽信号から頑健

に目的の信号成分を分離する手法の確立を目指し，方位クラスタリングとスペク

トログラム修復機能付き教師あり非負値行列因子分解 (NMF) を組み合わせた新

しい音楽信号分離手法を提案する．近年，音楽メディアは電子ファイルとして供

給されインターネットを通じて配信される機会が増加している．そのため，ユー

ザが既存の音楽メディアを自由に編集する等の能動的な創作活動が盛んになって

いる．このような背景から，音楽信号を対象とした信号分離手法が広く注目を集

めており世界中で盛んに研究されている．この音楽信号分離技術は，複数の楽器

が多重に混合された音楽信号の中から特定の楽器音を分離・抽出することを目的

としており，オーディオリミックス，自動採譜，楽器演奏法のための音楽教育と

いった様々な応用先が考えられる．

これまでの研究において，NMFを用いた音楽信号分離技術が非常に高い注目

を集めており，様々な改良手法が提案されている．しかしながら，いずれの手法

においても多くの問題があり，頑健かつ高精度に目的音を分離する手法は未だ提

案されていないのが現状である．そこで本研究では，新たにスペクトログラム修

復機能付き教師ありNMF (SNMF) を提案し，方位クラスタリングと組み合わせ

ることによって頑健かつ高精度に目的音を分離するマルチチャネル信号分離手法

を提案する．新たに提案するスペクトログラム修復機能付き SNMFは，信号の分

離と同時に，前段処理の方位クラスタリングによって失われた目的音成分の復元

を教師スペクトル基底の外挿によって実現する．すなわち，前段処理によって傷

∗奈良先端科学技術大学院大学情報科学研究科情報科学専攻修士論文, NAIST-IS-MT1251035,
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ついた混合信号のスペクトログラムを，後段の SNMFの教師スペクトル基底の

外挿によって復元することができる．

次に，教師スペクトル基底の外挿能力について，信号の生成モデルに基づく

理論解析を行い，基底外挿における最適なダイバージェンス規範を示し，スペク

トログラム修復機能付き SNMF特有の最適ダイバージェンスシフトのメカニズ

ムを明らかにする．加えて，ダイバージェンス規範に対する分離能力と外挿能力

のトレードオフを理論的に示し，人工及び実録音音楽信号を用いた音楽信号分離

実験において解析結果と同様の現象が現れることを確認する．

さらに，明らかにされた外挿能力理論に基づいて異なるダイバージェンス規

範をフレームごとに切り替える多重ダイバージェンス型ハイブリッド手法を提案

する．このダイバージェンスのダイバーシチを実装した提案ハイブリッド手法は

いかなる空間的配置の入力信号に対しても常に最高の分離性能を達成し，提案手

法の頑健性をさらに向上させることができる．本手法の有効性は，音楽信号分離

実験によって確認される．

キーワード

音楽信号分離，非負値行列因子分解，方位クラスタリング，スペクトログラム修

復，教師あり手法．
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1. Introduction

1.1 Background

In recent years, the main format for obtaining musical tunes has become elec-

tronic data such as music files, which can be made available over the Internet

owing to progress in information technology. Hence, users can easily obtain and

edit music tunes, resulting in the active creation of new contents. These con-

sumers’ activities have rapidly increased in the past few years with the expansion

of social networking services and video-sharing websites. However, it is still diffi-

cult to edit a specific instrumental signal in general music tunes containing many

instruments because almost all the commercially available music data are mixed

down, and consumers cannot obtain each solo-played instrumental signal in ad-

vance. Such audio editing of each sound source will enable us to engage in new

activities based on the appreciation of musical tunes and can be applied to many

valuable techniques including audio remixing by users [1, 2], musical instrument

education, 3D audio reproduction [3], and automatic music transcription [4, 5]

(see Fig. 1). With this background, music signal separation technologies have

attracted considerable interest and been intensively studied [6, 7, 8, 9, 10] in re-

cent years. However, it remains difficult to freely extract a specific music signal,

particularly in the case of instruments that belong to the same family.

Signal separation can be classified into overdetermined and underdetermined

problems. In the former situation, the number of channels is greater than the

number of sound sources, and many techniques have been studied and proposed

for overdetermined signal separation [11, 12, 13]. However, such separation tech-

niques cannot be applied to the above-mentioned music signal separation problem

because almost all musical tunes are provided in a stereo format and the num-

ber of sources is greater than two. Therefore, techniques for underdetermined

separation are required and should be used to achieve music signal separation.

1.2 Prior works

As a means of addressing underdetermined signal separation, in recent years, non-

negative matrix factorization (NMF) [14], which is a type of sparse representation

1



Audio remixing

3D audio reproduction

Musical instrument 
education

Automatic music 
transcription

Figure 1. Applications of music signal separation.

algorithm, has received much attention. NMF for acoustical signals decomposes

an input spectrogram into the product of a spectral basis matrix and its activation

matrix. The methods of signal separation based on NMF are roughly classified

into unsupervised and supervised algorithms. The former method attempts sep-

aration without using any training sequences, instead being subjected to various

constraints, as proposed in [15, 16, 17, 18, 19]. However, these techniques have

difficulty in clustering the decomposed spectral bases into a specific target sound

because the entire procedure should be carried out in a blind fashion. To solve

this problem, supervised NMF (SNMF) [20] and its improved method, penalized

SNMF (PSNMF) [21, 23, 22], have been proposed. These methods include a priori

training, which requires some sound samples of a target instrument, and separate

the target signal using supervised bases. PSNMF can extract the target signal to

some extent, particularly in the case of a small number of sources. However, for

a mixture consisting of many sources, such as more realistic musical tunes, the

source extraction performance is markedly degraded because of the existence of

2



instruments with similar timbre.

To apply NMF-based separation methods to multichannel signals, multichan-

nel NMF has been proposed as an unsupervised separation method [24, 25]. This

method is a natural extension of NMF for a stereo or multichannel signal and is

a unified method that addresses the spatial and spectral separation problems si-

multaneously. However, such unsupervised separation is a difficult problem, even

if the signal has multichannel components, because the decomposition is under-

specified. Hence, these algorithms involve strong dependence on initial values

and lack robustness. For multichannel signal separation, directional clustering

has also been proposed as an unsupervised method [26, 27, 28]. This method

quantizes directional information via time-frequency binary masking under the

assumption that the sources are completely sparse in the time-frequency domain.

However, there is an inherent problem that sources located in the same direction

cannot be separated using only the directional information. To cope with this

problem, a hybrid method for multichannel signal separation, which concatenates

PSNMF after directional clustering, has been proposed [29]. However, this hy-

brid method also has a problem that the extracted signal suffers from considerable

distortion because the signal obtained by directional clustering has many spec-

tral chasms, which mean spectral holes in the spectrogram. This results in the

cascaded SNMF being forced to incorrectly mimic such artificial spectral chasms.

In summary, no effective technique has yet been proposed for separating the

target source from a multichannel signal with high accuracy and satisfactory

robustness. Therefore, attempts should be made to develop an effective algorithm

for underdetermined signal separation. Such a robust signal separation method

for multichannel signals will be applicable to not only music signals but also

speech signals recorded by a microphone array to enhance the speech and suppress

interfering noise.

1.3 Scope of thesis

To achieve high-quality music signal separation with robustness, in this thesis, I

propose a new hybrid method that concatenates a new SNMF algorithm and an

unsupervised multichannel signal separation method. In addition, I also provide

a mathematical analysis for optimizing the proposed hybrid method. Figure 2

3
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Figure 2. Relation between conventional methods and proposed hybrid methods.

depicts the relation between the conventional methods and the proposed hybrid

methods.

The hybrid method divides the stereo music signal separation problem into

two stages, namely, spatial separation and spectral separation. The spatial sepa-

ration utilizes binary masking, which is performed by the directional clustering

technique, in the time-frequency domain. A clustering approach using spatial in-

formation is a common strategy used for multichannel signal separation because

it works well even in underdetermined situations. Then, in the spectral separa-

tion stage, a new SNMF algorithm is applied to separate the signals in the same

direction. In addition, this SNMF algorithm improves the sound quality of the

target signal, which is deteriorated by the preceding binary masking performed

in directional clustering. Therefore, the proposed hybrid method is a divide-and-

conquer method that utilizes suitable decompositions in each separation problem

4



and achieves robust multichannel signal separation with less sensitivity to the

initial values.

In the conventional hybrid method [29], the spectral chasms generated by bi-

nary masking degrade the sound quality of the separated target signal because

PSNMF is concatenated directly after directional clustering. To solve this prob-

lem, I propose a new SNMF with spectrogram restoration. By utilizing index

information generated from binary masking, the proposed SNMF regards the

spectral chasms as unseen observations, and finally reconstructs the target signal

components via spectrum extrapolation using supervised bases. In other words,

this SNMF can be categorized as a inpainting because the deteriorated spectro-

gram resulting from the preceding binary masking can be recovered. Note that an

SNMF-based extrapolation technique for acoustic signals has been proposed as

a means of expanding the acoustic signal bandwidth [30]. However, this method

cannot be applied to signal separation.

The proposed SNMF with spectrogram restoration attempts both signal sepa-

ration and basis extrapolation using the supervised bases. In previous studies, the

analysis of the optimal divergence criterion in SNMF has only been discussed for

signal separation [21, 22, 31], and the issue of the optimal divergence criterion in

SNMF for basis extrapolation has not been addressed. Therefore, in this thesis, I

analyze the ability of basis extrapolation for each divergence criterion in SNMF.

1.4 Outline of thesis

The thesis is organized as follows. First, I describe related works on single-

channel and multichannel signal separation methods in Sect. 2. In this section,

an overview of NMF is also given. In Sect. 3, I propose a new SNMF with

spectrogram restoration and derive its update rules for optimization. Also, the

relation between the extrapolation ability and the divergence criterion in SNMF

is clarified by theoretical analysis based on a signal generation model to find

the optimal criterion for SNMF with spectrogram restoration. In addition, the

efficacy of the proposed hybrid method with the proposed SNMF is confirmed

experimentally for musical signal separation. On the basis of the above-mentioned

findings, in Sect. 4, I propose a new method for switching the divergence criterion

in SNMF with spectrogram restoration to adapt to various types of input signals

5



and to separate the target signal robustly. The robustness of the proposed method

is confirmed by experimental evaluations. Finally, I summarize the contributions

of this thesis and provide suggestions for future work in Sect. 5.

6



2. Conventional Signal Separation Methods

2.1 Introduction

In this section, I describe conventional music signal separation methods and their

problems. In recent years, many types of signal separation methods have been

proposed and studied. These methods are roughly classified into single-channel

and multichannel signal separation algorithms. The former method attempts the

underdetermined separation using some constraints derived from the property

of the target signal. The latter method uses a spatial cue, which is obtained as

difference between channels, as a directional information and separates the target

signals. Then, in this section, I review commonly used signal separation methods,

PSNMF, Directional clustering, and Multichannel NMF.

First, I outline conventional single-channel signal separation methods in Sect. 2.2.

Next, I give a brief review of multichannel signal separation methods and its prob-

lems in Sect. 2.3. Finally, Sect. 2.4 concludes this section.

2.2 Conventional single-channel signal separation methods

2.2.1 Overview of NMF

NMF is a type of sparse representation algorithm that decomposes a nonnegative

matrix into two nonnegative matrices as

X ≃ V W , (1)

where X(∈ RM×N
≥ 0 ) is an observed nonnegative matrix, which is an amplitude (or

a power) spectrogram for applying NMF to the acoustic signal; V (∈ RM×D
≥ 0 ) is

often called the basis matrix, which includes bases (frequently-appearing spectral

patterns in X) as column vectors; and W (∈ RD×N
≥ 0 ) is often called the activation

matrix, which involves activation information of each basis of V . In addition, M

and N are the numbers of rows and columns of X, and D is the number of bases

of V . Figure 3 depicts the decomposition model of NMF, where the number of

bases D equals two. The basis matrix includes two types of spectral patterns

as the bases to represent the observed matrix using time varying gains in the

activation matrix. In the decomposition of NMF, a cost function is defined to

7
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Figure 3. Decomposition model of simple NMF.

optimize the variables V and W using an arbitrary divergence between X and

V W . The following equation represents the cost function of NMF:

JNMF = D(X∥V W ) , (2)

where D(·∥·) is an arbitrary distance function, e.g., Itakura-Saito divergence (IS-

divergence), generalized Kullback-Leibler divergence (KL-divergence), and Eu-

clidean distance (EUC-distance). In this study, I use the following generalized

divergence called β-divergence [32] in the cost function:

Dβ(B∥A) =



∑
i,j

{
bβi,j

β (β − 1)
+

aβi,j

β
−

bi,ja
β−1
i,j

β − 1

}
(β ∈ R\ {0, 1})

∑
i,j

{
bi,j log

bi,j

ai,j
+ ai,j − bi,j

}
(β = 1)

∑
i,j

{
bi,j

ai,j
− log

bi,j

ai,j
− 1

}
(β = 0)

, (3)

where A(∈ RI×J) and B(∈ RI×J) are matrices whose entries are ai,j and bi,j,

respectively. This divergence is a family of cost functions parameterized by a

single shape parameter β that takes IS-divergence, KL-divergence, and EUC-

distance as special cases (β = 0, 1, and 2, respectively) as shown in Figs. 6–8.
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Figure 4. Variation of β-divergence function when β = 0.
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Figure 5. Variation of β-divergence function when β = 1.
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Figure 7. Variation of β-divergence function when β = 3.
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Figure 8. Variation of β-divergence function when β = 4.

The multiplicative update rules for V and W that minimize the cost function

based on β-divergence are given by [33]

vm,d ← vm,d

(∑
n xm,nwd,n (

∑
d vm,dwd,n)

β−2∑
n wd,n (

∑
d vm,dwd,n)

β−1

)φ(β)

, (4)

wd,n ← wd,n

(∑
m vm,dxm,n (

∑
d vm,dwd,n)

β−2∑
m vm,d (

∑
d vm,dwd,n)

β−1

)φ(β)

, (5)

where xm,n, vm,d, and wd,n are the nonnegative entries of matrices X, V , and W ,

respectively. In addition, φ(β) is given by

φ(β) =



1

(2− β)
(β < 1)

1 (1 ≤ β ≤ 2)

1

(β − 1)
(β > 2)

. (6)

We can optimize V and W by some iterations of these update rules. The con-

vergence of these update rules is theoretically proven for any real-valued β.
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Figure 9. Decomposition model in each process of SNMF.

2.2.2 SNMF and PSNMF

The signal separation using NMF is achieved by extracting only the target spec-

tral bases. However, such unsupervised approaches have difficultly in clustering

the decomposed spectral patterns into a specific target instruments. Further-

more, each basis may be forced to include a multi-instrumental spectral pattern.

To solve this problem, SNMF [20] and its improved method, PSNMF, have been

proposed [21, 22]. These supervised scheme consists of two processes, namely, a

priori training and observed signal separation as shown in Fig. 9.

In SNMF, as the supervision, a priori spectral patterns (bases) should be

trained in advance to achieve signal separation. Hereafter, we assume that we

can obtain specific solo-played instrumental sounds, which is the target of the

separation task. The trained bases are constructed by NMF as

Ytarget ≃ FQ, (7)

where Ytarget(∈ RΩ×Ts

≥ 0 ) is an amplitude spectrogram of the specific instrumental

signal for training, F (∈ RΩ×K
≥ 0 ) is a nonnegative matrix that involves bases of the

12



target signal as column vectors, and Q(∈ RK×Ts

≥ 0 ) is a nonnegative matrix that

corresponds to the activation of each basis of F . In addition, Ω is the number

of frequency bins, Ts is the number of frames of the training signal, and K is

the number of bases. Therefore, the basis matrix F constructed by (7) is the

supervision of the target instrumental spectra.

The following equation represents the decomposition model in separation pro-

cess with trained supervision F :

Y ≃ FG+HU , (8)

where Y (∈ RΩ×T
≥ 0 ) is an observed spectrogram, G(∈ RK×T

≥ 0 ) is an activation matrix

that corresponds to F , H(∈ RΩ×L
≥ 0 ) is the residual spectral patterns that cannot be

expressed by FG, and U (∈ RL×T
≥ 0 ) is an activation matrix that corresponds to H .

Moreover, T is the number of frames of the observed signal and L is the number

of bases of H . In SNMF, the matrices G, H , and U are optimized under the

condition that F is known in advance. Hence, ideally, FG represents the target

instrumental components, and HU represents other different components from

the target sounds after the decomposition. The cost function for (8) is defined as

JSNMF = DβNMF
(Y ∥FG+HU ) . (9)

Also, the update rules for (9) are given by

hω,l ← hω,l

(∑
t yω,tul,tz

βNMF−2
ω,t∑

t ul,tz
βNMF−1
ω,t

)φ(βNMF)

, (10)

gk,t ← gk,t

(∑
ω fω,kyω,tz

βNMF−2
ω,t∑

ω fω,kz
βNMF−1
ω,t

)φ(βNMF)

, (11)

ul,t ← ul,t

(∑
ω hω,lyω,tz

βNMF−2
ω,t∑

ω hω,lz
βNMF−1
ω,t

)φ(βNMF)

, (12)

where yω,t, fω,k, gk,t, hω,l, and ul,t are the nonnegative entries of the matrices Y ,

F , G, H , and U , respectively, and

zω,t =
∑
k

fω,kgk,t +
∑
l

hω,lul,t. (13)

13



However, this SNMF incurs a risk of degrading the separation performance

owing to the simultaneous generation of similar spectral patterns in the supervised

basis matrix F and other basis matrix H (referred to as basis sharing problem).

This is because the cost function in SNMF is defined as the divergence between

the observed and reconstructed matrices, and unique decomposition is not guar-

anteed. To solve this problem, PSNMF has been proposed [21, 22]. PSNMF

employs a penalty term in the cost function to force the other bases to become

as different as possible from the supervised bases.

The cost function of PSNMF with orthogonality penalty is defined as follows:

JPSNMF1 = DβNMF
(Y ∥FG+HU ) + µ1∥F TH∥2Fr, (14)

where the conditions
∑

ω fω,k = 1 and
∑

ω hω,l = 1 are applied, µ1 is a weighting

parameter for the penalty term, and ∥ · ∥Fr indicates the Frobenius norm. The

minimization of the second term in (14) corresponds to the maximization of

orthogonality between F and H . The update rule for H , which minimizes the

cost function (14), is given by

hω,l ← hω,l

( ∑
t yω,tul,tz

βNMF−2
ω,t∑

t ul,tz
βNMF−1
ω,t + 2µ1

∑
k fω,k

∑
ω′ fω′,khω′,l

)φ(βNMF)

. (15)

The update rules for G and U are the same as (11) and (12).

Also, maximum-divergence penalty, which maximizes all divergence combi-

nations between the supervised bases in F and the other bases in H , has been

proposed as another means of preventing the basis sharing problem. The cost

function of PSNMF with maximum-divergence penalty is defined as follows:

JPSNMF2 = DβNMF
(Y ∥FG+HU ) + µ2 exp

(
− 1

λm

∑
k,l,ω

Dβm (fω,k∥hω,l)

)
, (16)

where µ2 and λm are the weighting and sensitivity parameters, respectively. Here,

exponentiation is applied to make the penalty term nonnegative.

The update rule for H , which minimizes the cost function (16), is given by

hω,l ← hω,l

(
λm

∑
t yω,tul,tz

βNMF−2
ω,t + µ2h

βm−1
ω,l Cβm

λm

∑
t ul,tz

βNMF−1
ω,t + µ2h

βm−2
ω,l Cβm

∑
k fω,k

)φ(βNMF)

, (17)
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where

Cβm = exp

(
− 1

λm

∑
k,l,ω

Dβm (fω,k∥hω,l)

)
. (18)

The update rules for G and U are the same as (11) and (12).

By imposing these penalty terms on the cost function, we can prevent the

basis sharing problem and separate the target signal with high accuracy. The

separation performance of PSNMF with orthogonality penalty and PSNMF with

maximum-divergence penalty are almost the same [22]. In this thesis, hereafter,

I use the orthogonality penalty and its update rules.

PSNMF can extract the target signal to some extent, particularly in the case of

a small number of sources. However, for the case of a mixture consisting of many

sources, such as more realistic musical tunes, the source extraction performance

is markedly degraded because of the existence of instruments with similar timbre.

2.3 Conventional multichannel signal separation methods

2.3.1 Directional clustering

Decomposition methods employing directional information for the multichannel

signal have also been proposed as unsupervised separation techniques [26, 27,

28]. These methods quantize directional information via time-frequency binary

masking under the assumption that the sources are completely sparse (double

disjoint) in the time-frequency domain. Figure 10 shows the separation algorithm

of directional clustering. The target source in the center direction is separated

by hard clustering method, which corresponds to the binary masking in the time-

frequency domain.

Such directional clustering works well, even in an underdetermined situation

where the number of sources is greater than that of inputs. However, there is an

inherent problem that sources located in the same direction cannot be separated

using the directional information. Furthermore, the extracted signal is likely to

be distorted because of the effect of binary masking.
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2.3.2 Hybrid method of directional clustering and PSNMF

To separate the sources in the same direction, a hybrid method that concatenates

PSNMF after directional clustering has been proposed [29]. Figure 11 indicates

the signal flow of the hybrid method. This hybrid method can effectively extract

the target instrument because the directionally clustered signal contains only few

instruments. Moreover, the residual interfering signal in the same direction can

be removed by PSNMF.

However, this hybrid method has a problem that the extracted signal suffers

from the generation of considerable distortion. This is due to the binary masking

in directional clustering. The signal in the target direction, which is obtained

by directional clustering, has many spectral chasms because the assumption of

sparseness in the time-frequency domain does not always hold completely. In

other words, the resolution of the spectrogram clustered as the target-direction

component is degraded by time-frequency binary masking. Figure 12 shows an

example of the spectrum of a signal separated by directional clustering. The

obtained spectrum has many chasms owing to the binary masking. These spectral

losses may deteriorate the performance of separation because PSNMF is forced

to incorrectly fit these spectral chasms using supervised bases.

2.3.3 Multichannel NMF

Multichannel NMF, which is a natural extension of NMF for a stereo or mul-

tichannel music signal, has been proposed as an unsupervised signal separation

method [24, 25]. These algorithms employ Hermitian positive definite matrix that

models the spatial property of each NMF basis and each frequency bin. There-

fore, multichannel NMF utilizes a frequency-wise transfer function between signal

source and microphone as a cue for basis clustering. However, such unsupervised

separation is a difficult problem, even if the signal has multichannel components,

because the decomposition is underspecified. Hence, these algorithms involve

strong dependence on initial values and lack robustness.
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Figure 10. Directional source distribution of (a) observed stereo signal, (b) sep-

arated target components in the center cluster.
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2.4 Conclusion

In this section, conventional single-channel signal separation methods were de-

noted. Next, conventional multichannel signal separation methods were reviewed.

Since each method has its own drawback, I propose a new hybrid method of di-

rectional clustering and a new SNMF with spectrogram restoration in the next

section to cope with the problems effectively.
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3. SNMF with Spectrogram Restoration and Its

Hybrid Method

3.1 Introduction

In the previous section, I described two types of conventional signal separation

methods and the problems of each method. To solve these problems, in this

section, I propose a new algorithm of SNMF with spectrogram restoration and

its hybrid method as a multichannel signal separation method.

First, I describe a strategy and a derivation of update rules for SNMF with

spectrogram restoration in Sect. 3.2. Second, theoretical analysis of basis extrap-

olation ability based on generation model is shown in Sect. 3.3. Third, I compare

separation performance of the proposed method and the other conventional meth-

ods via some experiments in Sect. 3.4 for a validation of the proposed method.

Finally, Sect. 3.5 concludes this section.

3.2 SNMF with spectrogram restoration

3.2.1 Motivation and strategy

The separated signal by the conventional hybrid method described in Sect. 2.3.2

suffers from the generation of considerable distortion owing to the binary masking

in directional clustering. To solve this problem, in this section, I propose a new

SNMF with spectrogram restoration as an alternative to the conventional PSNMF

for the hybrid method.

Figure 13 shows a signal flow of the proposed hybrid method that includes

SNMF with spectrogram restoration. The algorithm of SNMF with spectrogram

restoration utilizes index information determined in directional clustering. For

example, if the target instrument is localized in the center cluster along with

the interference, SNMF is only applied to the existing center components using

index information (active binary mask). Therefore, the spectrogram of the target

instrument is reconstructed using more matched bases because spectral chasms

are treated as unseen, and these chasms have no impact on the cost function in

SNMF with spectrogram restoration. In addition, the components of the target
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Figure 13. Signal flow of proposed hybrid method; SNMF with spectrogram

restoration concatenates after directional clustering.

instrument lost after directional clustering can be extrapolated using the super-

vised bases. In other words, the deteriorated target spectrogram is recovered with

the spectrogram restoration by the supervised basis extrapolation.

To illustrate the separation mechanism step by step, Fig. 14 (a) shows the

configuration of source components in the stereo signal, (b) shows the separated

components that are clustered around the center direction by directional clus-

tering, and (c) shows the separated target component obtained by SNMF with

spectrogram restoration. In Fig. 14 (a), the source components are distributed

in all directions with some overlapping. After directional clustering (Fig. 14 (b)),

the center sources lose some of their components (i.e., the tails on both sides),

and the other source components leak in the center cluster. After SNMF with

spectrogram restoration, the proposed algorithm restores the lost components

using the supervised bases (Fig. 14 (c)).
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However, this basis extrapolation includes an underlying problem. If the time-

frequency spectra are almost unseen in the spectrogram, which means that the

indexes are almost zero, a large extrapolation error may occur. Then, incorrect

bases are chosen and fitted to a small number of spectral grids by incorrectly

modifying the activation matrix G. In the worst case, the activation matrix G

contains very large values and the extracted signal is overloaded. To avoid this,

we should add a new penalty term in the cost function, as described in the next

section.

3.2.2 Cost function and update rules

In this section, we derive the update rules of SNMF with spectrogram restoration

based on β-divergence-based. Here, the index matrix I(∈ RΩ×T
{0, 1} ) is obtained from

the binary masking preceding the directional clustering. This index matrix has

specific entries of unity or zero, which indicates whether or not each grid of the

spectrogram belongs to the target directional cluster. The cost function in SNMF

with spectrogram restoration is defined using the index matrix I as

J (Θ) =
∑
ω,t

iω,tDβNMF
(yω,t∥

∑
kfω,kgk,t +

∑
lhω,lul,t)

+ λ
∑
ω,t

iω,tDβreg(0∥
∑

kfω,kgk,t) + µ∥F TH∥2F, (19)

where Θ = {G,H ,U} is the set of objective variables, iω,t is a entry of the index

matrix I, λ and µ are the weighting parameters for each term, and · represents the
binary complement of each entry in the index matrix. The first term represents

the main cost of separation in SNMF. Since the divergence DβNMF
(·∥·) is only

defined in grids whose index is one, the chasms in the spectrogram are ignored in

this SNMF decomposition. The second term forces the minimization of the value

of
∑

k fω,kgk,t. Hence, the supervised bases are chosen so as to minimize the scale

of FG in proportion to the number of zeros in the index matrix I in each frame

to avoid the extrapolation error. In other words, this penalty term regulates the

extrapolation. In addition, the third penalty term has the same property as that

in the cost function of conventional PSNMF (14).

The update rules based on (19) are obtained by the auxiliary function ap-

proach, similarly to [33]. Here, we can rewrite the cost function (19) using β-
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divergence as

J (Θ) = J1 + λJ2 + µJ3, (20)

J1 =
∑
ω,t

iω,t

(
yβNMF
ω,t

βNMF (βNMF − 1)
+

zβNMF
ω,t

βNMF

−
yω,tz

βNMF−1
ω,t

βNMF − 1

)
, (21)

J2 =
∑
ω,t

iω,t
(
∑

k fω,kgk,t)
βreg

βreg

, (22)

J3 =
∑
k,l

(∑
ω

fω,khω,l

)2

. (23)

First, I define the upper bound function for J1. The second term of J1 is

convex for βNMF ≥ 1 and concave for βNMF < 1, and the third term is convex for

βNMF ≥ 2 and concave for βNMF < 2. Applying Jensen’s inequality to the convex

function and the tangent line inequality to the concave function, we can define the

upper bound function J +
1 using auxiliary variables αω,t,k ≥ 0, γω,t,l ≥ 0, η1 ≥ 0,

η2 ≥ 0, and σω,t that satisfy
∑

k αω,t,k=1,
∑

l γω,t,l=1, and η1+η2=1 as

J1 ≤ J +
1 =

∑
ω,t

iω,tP(βNMF)
ω,t , (24)

where

P(βNMF)
ω,t =


N (βNMF)

ω,t − yω,tM(βNMF−1)
ω,t (βNMF < 1)

M(βNMF)
ω,t − yω,tM(βNMF−1)

ω,t (1≤βNMF ≤ 2)

M(βNMF)
ω,t − yω,tN (βNMF−1)

ω,t (βNMF > 2)

, (25)

M(βNMF)
ω,t =

1

βNMF

{∑
k

αω,t,kη1

(
fω,kgk,t
αω,t,kη1

)βNMF

+
∑
l

γω,t,lη2

(
hω,lul,t

γω,t,lη2

)βNMF

}
,

(26)

N (βNMF)
ω,t = σβNMF−1

ω,t (zω,t − σω,t) +
σβNMF
ω,t

βNMF

. (27)
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The equality in (24) holds if and only if the auxiliary variables are set as follows:

αω,t,k =
fω,kgk,t∑
k′ fω,k′gk′,t

, (28)

γω,t,l =
hω,lul,t∑
l′ hω,l′ul′,t

, (29)

η1 =

∑
k′ fω,k′gk′,t∑

k′ fω,k′gk′,t +
∑

l′ hω,l′ul′,t
, (30)

η2 =

∑
l′ hω,l′ul′,t∑

k′ fω,k′gk′,t +
∑

l′ hω,l′ul′,t
, (31)

σω,t =
∑
k′

fω,k′gk′,t +
∑
l′

hω,l′ul′,t. (32)

Second, I define the upper bound function for J2. This term is convex for

βreg ≥ 1 and concave for βreg < 1. Similarly to (24)-(27), we can define the upper

bound function J +
2 using auxiliary variables αω,t,k and ρω,t as

J2 ≤ J +
2 =

∑
ω,t

iω,tS(βreg)
ω,t , (33)

where

S(βreg)
ω,t =


ρ
βreg−1
ω,t (

∑
k fω,kgk,t − ρω,t) +

ρ
βreg

ω,t

βreg

(βreg < 1)

1

βreg

∑
k αω,t,k

(
fω,kgk,t

αω,t,k

)βreg

(1 ≤ βreg)

. (34)

The equality in (33) holds if and only if the auxiliary variables are set as (28)

and as follows:

ρω,t =
∑
k′

fω,k′gk′,t. (35)

Third, I define the upper bound function for J3 using auxiliary variables

δk,l,ω ≥ 0 that satisfy
∑

ω δk,l,ω = 1 as

J3 ≤ J +
3 =

∑
k,l,ω

f 2
ω,kh

2
ω,l

δk,l,ω
. (36)
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The equality in (36) holds if and only if the auxiliary variables are set as follows:

δk,l,ω =
fω,khω,l∑
ω′ fω′,khω′,l

. (37)

Finally, using (24), (33), and (36), we can define the upper bound function

J +(Θ, Θ̂) as

J +(Θ, Θ̂) = J +
1 + λJ +

2 + µJ +
3 , (38)

where Θ̂ is the set of auxiliary variables. The update rules with respect to each

variable are determined by setting the gradient to zero.

From ∂J +(Θ, Θ̂)/∂gk,t = 0, we obtain∑
ω

iω,t

(
VβNMF

(Θ, Θ̂)−WβNMF
(Θ, Θ̂)

)
+ λXβreg(Θ, Θ̂) = 0, (39)

where

VβNMF
(Θ, Θ̂) =

σβNMF−1
ω,t fω,k (βNMF < 1)

gβNMF−1
k,t (αk,ω,tη1)

1−βNMF fβNMF

ω,k (1 ≤ βNMF)
, (40)

WβNMF
(Θ, Θ̂) =

yω,tg
β−2
k,t (αk,ω,tη1)

2−βNMF fβNMF−1
ω,k (βNMF ≤ 2)

yω,tσ
βNMF−2
ω,t fω,k (2 < βNMF)

, (41)

Xβreg(Θ, Θ̂) =


∑

ω iω,tρ
βreg−1
ω,t fω,k (βreg < 1)∑

ω iω,tfω,k

(
fω,kgk,t

αω,t,k

)βreg−1

(1 ≤ βreg)
. (42)

By solving (39) for gk,t under the nonnegativity, we obtain

gk,t =



(∑
ω iω,tyω,t (αk,ω,tη1)

2−βNMF fβNMF−1
ω,k∑

ω iω,tσ
βNMF−1
ω,t fω,k + λXβreg

) 1
2−βNMF

(βNMF < 1)∑
ω iω,tyω,t (αk,ω,tη1)

2−βNMF fβNMF−1
ω,k gβNMF−1

k,t∑
ω iω,tg

βNMF−1
k,t (αk,ω,tη1)

1−βNMF fβNMF

ω,k + λXβreg

(1 ≤ βNMF ≤ 2)( ∑
ω iω,tyω,tσ

βNMF−2
ω,t fω,kg

βNMF−1
k,t∑

ω iω,tg
βNMF−1
k,t (αk,ω,tη1)

1−βNMF fβNMF

ω,k + λXβreg

) 1
βNMF−1

(2 < βNMF)

. (43)
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Then we can obtain the update rule of gk,t by substituting (28), (30), (32), and

(35) into (43) as follows:

gk,t ← gk,t

( ∑
ω iω,tyω,tfω,kz

βNMF−2
ω,t∑

ω iω,tfω,kz
βNMF−1
ω,t + λ

∑
ω iω,tfω,k (

∑
k′ fω,k′gk′,t)

βreg−1

)φ(βNMF)

.

(44)

The update rules of the other variables are similarly obtained as follows:

hω,l ← hω,l

( ∑
t iω,tyω,tul,tz

βNMF−2
ω,t∑

t iω,tul,tz
βNMF−1
ω,t + 2µ

∑
k fω,k

∑
ω′ fω′,khω′,l

)φ(βNMF)

, (45)

ul,t ← ul,t

(∑
ω iω,tyω,thω,lz

βNMF−2
ω,t∑

ω iω,thω,lz
βNMF−1
ω,t

)φ(βNMF)

. (46)

The convergence of these update rules is theoretically proven for any real-valued

βNMF and βreg.

3.3 Theoretical analysis of basis extrapolation based on

generation model

3.3.1 Optimal divergence for basis extrapolation and generation model

The proposed method attempts both signal separation and basis extrapolation

using the supervised bases F . In previous studies, the analysis of optimal diver-

gence only for signal separation has been discussed [21, 22, 31]. However, there

has been no discussion on the optimal divergence for the extrapolation techniques

using NMF. In this section, I analyze the extrapolation ability based on a sta-

tistical generation model of the observed data Y , and determine the optimal

divergence for basis extrapolation w.r.t. various βNMF and βreg values.

In NMF decomposition, the minimization of β-divergence between Y and

FG corresponds to a log-likelihood maximization under the assumption of the

generation model of Y for each βNMF [34]. The minimization of DβNMF
(yω,t∥ϑ)

is equivalent to the maximization of exp(−DβNMF
(yω,t∥ϑ)). Here, we can rewrite
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exp(−DβNMF
(yω,t∥ϑ)) as

exp (−DβNMF
(yω,t∥ϑ)) =



yω,t

ϑ
exp

(
−
yω,t

ϑ
+ 1

)
(βNMF = 0)(

ϑe

yω,t

)yω,t

exp (−ϑ) (βNMF = 1)

exp

(
−

(yω,t − ϑ)2

2

)
(βNMF = 2)

exp

(
ϑβNMF−1yω,t

βNMF − 1
−

ϑβNMF

βNMF

)
(βNMF ≥ 3)

, (47)

where ϑ =
∑

k fω,kgk,t represents a parameter of the maximum likelihood esti-

mation. A probability density function (p.d.f.) that corresponds to (47) is given

by

yω,t ∼ p (yω,t) =



1

ϑ1

exp

(
−
yω,t

ϑ1

)
(βNMF = 0)

ϑ2
yω,t

Γ (yω,t + 1)
exp (−ϑ2) (βNMF = 1)

1
√
2πϑ3

exp

(
−

(yω,t − ϑ4)
2

2ϑ3
2

)
(βNMF = 2)

C exp

(
ϑ5

βNMF−1yω,t

βNMF − 1

)
(βNMF ≥ 3)

, (48)

where Γ(·) is a gamma function. These generation models of βNMF = 0, 1, and

2 are equivalent to exponential distribution, Poisson distribution, and Gaussian

distribution, respectively. The generation models for βNMF ≥ 3 correspond to a

distribution in which the probability increases exponentially with increasing yω,t.

Strictly, this distribution is not a p.d.f. because it diverges when yω,t increases.

Thus, we set the upper bound of yω,t to a constantM and define the corresponding

p.d.f. with normalization coefficient Cm, which is given by

C = ϑβNMF−1
5 (βNMF − 1)−1

(
exp

(
ϑβNMF−1
5

βNMF − 1
Cm

)
− 1

)−1

. (49)

Using (48), we can generate the most probable spectrogram for each βNMF.
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3.3.2 Simulation conditions

To analyze the net extrapolation ability, I simulate the spectrogram restoration

task. In this simulation, I generated random i.i.d. values, which obey the cor-

responding generation model (48) for each βNMF, as the observed data matrix

Y . I compared βNMF = 0, 1, 2, 3, 4 and βreg = 0, 1, 2, 3, and I used the same

divergence βNMF in the training and separation processes. The size of this data

matrix was set to Ω = 5000 and T = 200. I set the parameters of each p.d.f. to

ϑ1 = 1, ϑ2 = 5, ϑ3 = 10, ϑ4 = 50, ϑ5 = 2, and Cm = 15. These parameters

are determined so as to generate the nonnegative random i.i.d. values that obey

each corresponding generation model. Note that the parameters θ1–θ5 simply

determine the scales of the input random variables, and basically can be set to

arbitrary value without loss of generality. In addition, I used two types of data-

missing patterns I, in which 75% or 98% of the grids were missing in a uniform

manner, and the missing data I ◦Y imitated the binary-masking procedure. The

supervised bases F were obtained by training using the same data matrix Y ,

namely, Ytarget = Y in Fig. 9. The number of supervised bases, K, was 100,

which is the half size of T , and the number of other bases, L, was 30. Therefore,

the task was to reconstruct original Y from the observations with missing data,

I ◦ Y , using the trained bases.

3.3.3 Simulation results and discussion

I used sources-to-artifacts ratio (SAR) defined in [35] as the accuracy of the

extrapolation. Here, the estimated signal ŝ (t) is defined as

ŝ (t) = starget (t) + sinterf (t) + sartif (t) , (50)

where starget (t) is the allowable deformation of the target source, sinterf (t) is the

allowable deformation of the sources that account for the interferences of the

undesired sources, and sartif (t) is an artifact term that may correspond to the

artifacts of the separation algorithm, such as musical noise, or simply undesirable

deformation induced by the nonlinear property of the separation algorithm. The

formulas for SAR is defined as

SAR = 10 log10

∑
t {starget(t) + einterf(t)}2∑

t eartif(t)
2

. (51)
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Therefore, SAR indicates the absence of artificial distortion.

Figure 15 shows the SAR result for each divergence and regularization. From

this result, it is confirmed that a higher βNMF provides better basis extrapo-

lation regardless of the type of regularization (βreg). In NMF decomposition,

if we set βNMF to a large value, the trained bases tend to become anti-sparse

(smooth). In contrast, if βNMF is close to zero, the trained bases become more

sparsity-aware, and this property is suitable for normal NMF-based music source

separation because of the inherent sparsity of music spectrograms (e.g., βNMF = 1

is recommended in [21, 22, 31]). However, for basis extrapolation, sparse bases

are not suitable because it is difficult to extrapolate them only from the observ-

able data. Therefore, we speculate that the optimal divergence in SNMF with

spectrogram restoration, which attempts to fit the trained bases using spectral

components except for chasms, is shifted to βNMF > 1 rather than KL-divergence

(βNMF = 1) because of the trade-off between separation and extrapolation abili-

ties, as illustrated in Fig. 16. This issue will be confirmed experimentally in the

next section.
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3.4 Comparison between proposed hybrid method and con-

ventional methods

3.4.1 Experimental conditions

I conducted objective evaluation to confirm the effectiveness of the proposed hy-

brid method described in the previous section. In this experiment, I compared

five methods, namely, simple directional clustering [26], Multichannel NMF based

on IS-divergence [25], PSNMF [21, 22], conventional hybrid method that concate-

nates PSNMF after directional clustering [29], and proposed hybrid method in-

cluding SNMF with spectrogram restoration after directional clustering, in terms
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Figure 17. Scores of each part.

Table 1. Compositions of musical instruments

Dataset Melody 1 Melody 2 Midrange Bass

C1 Oboe Flute Piano Trombone

C2 Trumpet Violin Harpsichord Fagotto

C3 Horn Clarinet Piano Cello

of their ability to separate music artificial and real-recorded signals. Also, I com-

pared some evaluation scores with various βNMF and βreg for PSNMF and the

proposed hybrid method by setting five divergences and regularizations, namely,

β = 0, 1, 2, 3, and 4. I used the same divergence (βNMF) in the training and sep-

aration processes for PSNMF and proposed SNMF with spectrogram restoration

in the proposed hybrid method. In this experiment, I conducted two experiments

to consider artificial signal and real-recorded signal cases. I used stereo signals

containing four melody parts (depicted in Fig. 17) with three compositions (C1–

C3) of instruments shown in Table 1. These signals were artificially generated

by a MIDI synthesizer. In particular, these stereo signals were mixed down to

a monaural format only when we evaluate the separation accuracy of PSNMF

because PSNMF is a separation method for a monaural input signal.

In the artificial signal case, the observed signals Y were produced by mixing
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Figure 18. Panning of four sources with sine law used in artificial signal case

experiment. Numbered black circles represent locations of instruments in stereo

format. For example, if target is Ob., No.1 is set to Ob. and Nos.2, 3, and 4 are

combinations of Fl., Tb., and Pf.

four sources with the same power. The observed signal contained one source in

the left and right directions and two sources in the center direction based on a sine

law (see Fig. 18). The target instrument is always located in the center direction

along with another interfering instrument, and we prepared two patterns in which

the left and right sources are located at θ = 15◦ and 45◦. In addition, I used the

same MIDI sounds of the target instruments as supervision for a priori training.

The training sounds contained two octave notes that cover all notes of the target

signal in the observed signal. The sampling frequency of all signals was 44.1 kHz.

The spectrograms were computed using a 92-ms-long rectangular window with

a 46-ms overlap shift. The number of iterations for the training and separation

were 500. Moreover, the number of clusters used in directional clustering was 3,

the number of a priori bases, K, was 100, and the number of bases for matrix H ,

H, was 30. The weighting parameters λ and µ were empirically determined.
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Figure 19. Geometry of the loudspeaker and binaural microphone (dummy head).

Numbered black circles represent locations of loudspeakers. Target source and

supervision sound is always located in No.1 position.

In the real-recorded signal case, I recorded each instrumental solo signal and

the supervision sound, which are the same as those in the artificial case, in an

experimental room whose reverberation time was 200 ms. A geometry of the

loudspeaker and binaural microphone NEUMANN KU-100 is shown in Fig. 19.

The target source and the supervision sound is always located in No.1 position in

Fig. 19. The observed signal Y was produced by mixing these recorded signals as

the same power. Other conditions were the same as those of the artificial signal

case.
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3.4.2 Experimental results

I used the signal-to-distortion ratio (SDR), source-to-interference ratio (SIR), and

SAR defined in [35] as the evaluation scores. The formulas for SDR and SIR are

defined as

SDR = 10 log10

∑
t starget(t)

2∑
t {einterf(t) + eartif(t)}2

, (52)

SIR = 10 log10

∑
t starget(t)

2∑
t einterf(t)

2
. (53)

SDR indicates the quality of the separated target sound, and SIR indicates the

degree of separation between the target and other sounds. Therefore, SDR indi-

cates the total evaluation score that involves SIR and SAR.

First, I compare the variation of separation performance for various βNMF and

βreg. Figures 20 and 21 show the average SDR, SIR, and SAR of the proposed

hybrid method for each divergence (βNMF) and each regularization (βreg) in the

artificial signal case with θ = 15◦ and θ = 45◦, where the four instruments are

shuffled with 12 combinations in each of compositions C1–C3. Therefore, these

results are the averages of 36 input signal patterns. Also, Fig. 22 show the average

SDR, SIR, and SAR in the real-recorded signal case. From the SDRs in Figs.

20, 21, and 22, the regularization with KL-divergence (βreg = 1) is slightly better

than the other divergences but the difference is not significant, except for the

case of βreg = 0. In addition, we can confirm that the EUC-distance-based cost

function (βNMF = 2) is an optimal divergence for the proposed hybrid method

including SNMF with spectrogram restoration.

Next, I compare the separation performance of the proposed hybrid method

with the other conventional methods, where I compare the evaluation scores of the

proposed hybrid method only when βreg = 1 because this KL-divergence-based

regularization achieves the highest separation performance. Figures 23 and 24

show the average SDR, SIR, and SAR for each method in the artificial signal

case with θ = 15◦ and θ = 45◦. Also, Fig. 25 shows the average SDR, SIR,

and SAR in the real-recorded signal case. Similarly to the previous results, these

results are the averages of 36 input signal patterns, which contain all compositions

and instrumental combinations.
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From the SDRs in Figs. 23, 24, and 25, we can confirm that directional cluster-

ing does not have sufficient performance because this method cannot discriminate

the sources in the same direction. Multichannel NMF also cannot achieve the suf-

ficient separation because this method strongly depends on the initial value and

lack robustness. In contrast, the methods using SNMF can give better results

and the proposed hybrid method with SNMF with spectrogram restoration out-

performs all other methods in both artificial and real-recorded signal cases. In

addition, the conventional hybrid method is inferior to PSNMF when βNMF ≤ 1

whereas this hybrid method utilizes both directional clustering and PSNMF. This

is because the conventional hybrid method is affected by the spectral chasms and

cannot reconstruct such lost components. Furthermore, we can confirm that the

EUC-distance-based cost function (βNMF = 2) is an optimal divergence for the

proposed hybrid method, whereas KL-divergence (βNMF = 1) is the best diver-

gence even for conventional PSNMF [21, 22, 31]. This marked shift of the optimal

divergence in SNMF with spectrogram restoration is due to the trade-off between

the separation and extrapolation abilities, as predicted in Sect. 3.3.
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Figure 20. Average scores with various divergences and regularizations in artificial

signal case when θ = 15◦: (a) shows SDR, (b) shows SIR, and (c) shows SAR for

proposed methods.
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Figure 21. Average scores with various divergences and regularizations in artificial

signal case when θ = 45◦: (a) shows SDR, (b) shows SIR, and (c) shows SAR for

conventional and proposed methods.
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Figure 22. Average scores with various divergences and regularizations in real-

recorded signal case: (a) shows SDR, (b) shows SIR, and (c) shows SAR for

conventional and proposed methods.
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Figure 23. Average scores in artificial signal case when θ = 15◦: (a) shows SDR,

(b) shows SIR, and (c) shows SAR for conventional and proposed methods.
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Figure 24. Average scores in artificial signal case when θ = 45◦: (a) shows SDR,

(b) shows SIR, and (c) shows SAR for conventional and proposed methods.
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Figure 25. Average scores in real-recorded signal case: (a) shows SDR, (b) shows

SIR, and (c) shows SAR for conventional and proposed methods.
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3.5 Conclusion

In this section, first, I derived the update rules of SNMF with spectrogram restora-

tion and proposed hybrid method that concatenates SNMF with spectrogram

restoration after directional clustering. This SNMF attempts both signal separa-

tion and basis extrapolation simultaneously.

Next, I analyzed the net extrapolation ability based on generation models

of each divergence. This analysis revealed the mechanism of marked shift of

optimal divergence in SNMF with spectrogram restoration and trade-off between

separation and extrapolation abilities owing to the difference of sparseness in each

divergence.

Finally, the effectiveness of the proposed hybrid method was confirmed by

the experiments for artificial and real-recorded signals. The results showed the

marked shift of the optimal divergence for the proposed hybrid method because

of the trade-off between separation and extrapolation abilities.
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4. Optimal Divergence Diversity for SNMF with

spectrogram restoration

4.1 Introduction

In the previous section, I revealed the mechanism of optimal divergence shift in the

SNMF methods. This divergence shift is due to the trade-off between separation

and extrapolation abilities. The optimal divergence for SNMF with spectrogram

restoration depends on the rate of spectral chasms in each time frame of the

spectrogram obtained by preceding directional clustering. Therefore, the optimal

divergence temporally fluctuates because the spatial condition is not consistent

in the general music signal, and the divergence of SNMF should be changed in

each time frame automatically. To solve this problem, in this section, I propose

a new scheme for frame-wise divergence selection to separate the target signal

using optimal divergence.

First, I describe about a new scheme of optimal divergence diversity and

derive update rules of the proposed method in Sect. 4.2. Second, I conduct an

experiment to compare separation performance of the proposed method with

divergence diversity and the divergence-fixed hybrid method in Sect. 4.3. Finally,

Sect. 4.4 concludes this section.

4.2 SNMF with spectrogram restoration based on multi-

divergence

4.2.1 Divergence dependency on local chasms condition

The optimal divergence for SNMF with spectrogram restoration depends on the

rate of spectral chasms in each time frame of the spectrogram obtained by pre-

ceding directional clustering because of the trade-off between separation and ex-

trapolation abilities. If there are many chasms in a frame of the binary-masked

spectrogram, SNMF is preferred to have high extrapolation ability. In contrast,

if the rate of chasms is low value, the separation ability is required rather than

the extrapolation. Therefore, it is expected that EUC-distance should be used

in the frames that have many chasms, and KL-divergence should be used in the
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Figure 26. Divergence diversity algorithm of proposed method.

other frames. To improve total separation performance of SNMF with spectro-

gram restoration for any types of input signals, we propose a new frame-wise

divergence switching method as described in the next section.

4.2.2 Cost function and update rules

Considering the above-mentioned divergence dependency on the local chasm con-

dition, we propose to switch the divergence in each frame of the spectrogram ac-

cording to the rate of chasms in each frame, rt, and a threshold value τ (0≤τ≤1),

where the rate of chasms rt can be calculated from the index matrix I. Figure 26

depicts an algorithm of the frame-wise divergence switching. This divergence

switching method is implemented by switching the cost function in each frame,
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as

Jdiversity =
∑
t

Jt, (54)

Jt =



∑
ω iω,tDβ=2(yω,t∥s(EUC)

ω,t )

+ λ(EUC)
∑

ω iω,tDβreg(0∥
∑

k f
(EUC)
ω,k gk,t)

+ µ(EUC)∥F (EUC)TH∥2Fr (rt ≥ τ)∑
ω iω,tDβ=1(yω,t∥s(KL)

ω,t )

+ λ(KL)
∑

ω iω,tDβreg(0∥
∑

k f
(KL)
ω,k gk,t)

+ µ(KL)∥F (KL)TH∥2Fr (rt < τ)

, (55)

s
(∗)
ω,t =

∑
k

f
(∗)
ω,kgk,t +

∑
n

hω,nun,t, (56)

rt =

∑
ω iω,t
Ω

, (57)

where F (KL)(∈ RΩ×K
≥ 0 ) and F (EUC)(∈ RΩ×K

≥ 0 ) are the supervised basis matrices trained

in advance using KL-divergence-based NMF and EUC-distance-based NMF, re-

spectively. Also, f
(KL)
ω,k and f

(EUC)
ω,k are the entries of F (KL) and F (EUC), re-

spectively, µ(∗) and λ(∗) are the weighting parameters for each term, and ∗ =
{KL,EUC}. The divergence is determined depending on rt and τ in each frame.

Therefore, this method can be considered as a frame-wise diversity of the diver-

gence to achieve both of optimal separation and extrapolation.

The update rules based on (54) is obtained by the auxiliary function approach.

Similarly to Sect. 3.2.2, we can design the upper bound function J + using aux-

iliary variables ζ
(∗)
k,l,ω ≥ 0, κ

(∗)
ω,t,k ≥ 0, γω,t,l ≥ 0, ε1 ≥ 0, ε2 ≥ 0, and ξ

(∗)
ω,t ≥ 0 that
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satisfy
∑

ω ζ
(∗)
k,l,ω = 1,

∑
k κ

(∗)
ω,t,k = 1,

∑
l γω,t,l = 1, and ε1 + ε2 = 1, as

Jdiversity ≤ J +
diversity =

∑
t

J +
t , (58)

Jt ≤ J +
t =



∑
ω iω,t

(
y2ω,t + pω,t + 2qω,t

)
+ λ(EUC)

∑
ω iω,tR

(EUC)
βreg

+ µ(EUC)
∑

k,l,ω

f
(EUC)
ω,k

2h2
ω,l

ζ
(EUC)
k,l,ω

(rt ≥ τ)∑
ω iω,t

(
−yω,t

∑
k,l κ

(KL)
ω,t,kγω,t,lQ+ c

)
+ λ(KL)

∑
ω iω,tR

(KL)
βreg

+ µ(KL)
∑

k,l,ω

f
(KL)
ω,k

2h2
ω,l

ζ
(KL)
k,l,ω

(rt < τ)

, (59)

where

pω,t =
∑
k

f
(EUC)
ω,k

2g2k,t

κ
(EUC)
ω,t,k

+
∑
l

hω,lul,t

γω,t,l
, (60)

qω,t =

(∑
k

f
(EUC)
ω,k gk,t

)(∑
l

hω,lul,t

)
− yω,t

∑
k

f
(EUC)
ω,k gk,t − yω,t

∑
l

hω,lul,t,

(61)

R(∗)
βreg

=


ξ
(∗)
ω,t

βreg−1
(∑

k f
(∗)
ω,kgk,t − ξ

(∗)
ω,t

)
+

ξ
(∗)
ω,t

βreg

βreg

(βreg < 1)

1

βreg

∑
k κ

(∗)
ω,t,k

(
f
(∗)
ω,kgk,t

κ
(∗)
ω,t,k

)βreg

(1 ≤ βreg)

, (62)

Q = ε1 log Φ + ε2 log Ψ, (63)

c =− yω,t
∑
k,l

κ
(KL)
ω,t,kγω,t,l

(
log κ

(KL)
ω,t,kγω,t,l + ε1 log ε1 + ε2 log ε2

)
, (64)

Φ = γω,t,lf
(KL)
ω,k gk,t, (65)

Ψ = κ
(KL)
ω,t,khω,lul,t. (66)

The equality in (59) holds if and only if the auxiliary variables are set as (29)
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and as follows:

ζ
(∗)
k,l,ω =

f
(∗)
ω,khω,l∑

ω′ f
(∗)
ω′,khω′,l

, (67)

κ
(∗)
ω,t,k =

f
(∗)
ω,kgk,t∑

k′ f
(∗)
ω,k′gk′,t

, (68)

ε1 =
Φ

Φ+Ψ
, (69)

ε2 =
Ψ

Φ+Ψ
, (70)

ξ
(∗)
ω,t =

∑
k

f
(∗)
ω,kgk,t. (71)

The update rules are obtained from the derivative of the upper bound function

(58) w.r.t. each objective variable and substitution of the equality condition (67)–

(71), as

gk,t←



gk,t ·
∑

ω iω,tyω,tf
(EUC)
ω,k∑

ω iω,tf
(EUC)
ω,k s

(EUC)
ω,t + λ(EUC)

∑
ω iω,tf

(EUC)
ω,k

(∑
k′ f

(EUC)
ω,k′ gk′,t

)βreg

(rt ≥ τ)

gk,t ·
∑

ω iω,tyω,tf
(KL)
ω,k s

(KL)
ω,t

−1∑
ω iω,tf

(KL)
ω,k + λ(KL)

∑
ω iω,tf

(KL)
ω,k

(∑
k′ f

(KL)
ω,k′ gk′,t

)βreg

(rt < τ)

,

(72)

hω,l ← hω,l ·
∑

t iω,tyω,tul,tNω,t∑
t iω,tul,tDω,t + Pω,l

, (73)

ul,t←


ul,t ·

∑
ω iω,tyω,thω,l∑

ω iω,thω,ls
(EUC)
ω,t

(rt ≥ τ)

ul,t ·
∑

ω iω,tyω,thω,ls
(EUC)
ω,t

−1∑
ω iω,thω,l

(rt < τ)

, (74)
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where Nω,t, Dω,t, and Pω,l are given by

Nω,t =

1 (rt ≥ τ)

s
(KL)
ω,t

−1 (rt < τ)
, (75)

Dω,t =

s
(EUC)
ω,t (rt ≥ τ)

1 (rt < τ)
, (76)

Pω,l =

µ(EUC)
∑

k f
(EUC)
ω,k

∑
ω′ f

(EUC)
ω′,k hω′,l (rt ≥ τ)

µ(KL)
∑

k f
(KL)
ω,k

∑
ω′ f

(KL)
ω′,k hω′,l (rt < τ)

. (77)

In total, the update rules of proposed SNMF with frame-wise divergence diversity

are defined as (72)–(74).

4.3 Evaluation experiment

4.3.1 Experimental conditions

To confirm the effectiveness of the proposed hybrid method with divergence di-

versity, I compared five methods, namely, PSNMF [22] based on KL-divergence,

PSNMF based on EUC-distance, the hybrid method using SNMF with spec-

trogram restoration based on only EUC-distance, the hybrid method including

SNMF with spectrogram restoration based on only KL-divergence, and the pro-

posed hybrid method that switches the divergence to the optimal one framewisely.

In this experiment, I used stereo signals containing four melody parts (depicted in

Fig. 27) with three compositions (C1–C3) of instruments shown in Table 1. Simi-

larly to Sect. 3.4.1, these signals were artificially generated by a MIDI synthesizer,

and the observed signals Y were produced by mixing four sources with the same

power. Also, these stereo signals were mixed down to a monaural format only

when we evaluate the separation accuracy of PSNMF. The sources were mixed as

Fig. 18, where the target source was always located in the center direction with

another interfering source.

I prepared four spatially different dataset patterns of the observed signals,

SP1–SP4, as shown in Table 2. In the hybrid method, many chasms were pro-

duced by directional clustering in the measures where θ = 45◦ compared with
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Figure 27. Scores of each part. The observed signal consists of four measures.

Table 2. Spatial conditions of each dataset

Spatial Measure

pattern 1st 2nd 3rd 4th

SP1 θ=45◦ θ=0◦ θ=0◦ θ=0◦

SP2 θ=45◦ θ=45◦ θ=0◦ θ=0◦

SP3 θ=45◦ θ=45◦ θ=45◦ θ=0◦

SP4 θ=45◦ θ=45◦ θ=45◦ θ=45◦

those of θ = 0◦. Therefore, we can expect that EUC-distance-based hybrid

method is suitable for SP4 rather than the dataset of SP1.

In addition, I used the same MIDI sounds of the target instruments as super-

vision for a priori training. The threshold value for the divergence diversity, τ ,

was set to 20%. The other experimental conditions were the same as those in

Sect. 3.4.1.

4.3.2 Experimental results

Figure 28 shows the average SDR, SIR, and SAR scores for each method and

each dataset pattern, where four instruments are shuffled with 12 combinations

in each of compositions C1–C3. Therefore, these results are the averages of 36 in-

put signals. In addition, the SDR scores of PSNMF are the same for any datasets
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because the input signals for PSNMF are mixed down to a monaural format.

From this result, KL-divergence-based hybrid method achieves high separation

accuracy for the dataset of spatial patterns SP1, SP2, and SP3 because these

signals do not have much spectral chasms. On the other hand, EUC-divergence-

based hybrid method achieves high separation accuracy for SP4. This dataset

has many spectral chasms because the signals are always mixed with a wide

panning (θ = 45◦), which yields many chasms, and the extrapolation ability is

highly required. In addition, the proposed hybrid method with frame-wise diver-

gence diversity can always achieve better separation for any datasets regardless

of the condition whether many chasms exist or not. This is because the proposed

method provides the appropriate diversity of the divergence and can automati-

cally apply the optimal divergence to each time frame.
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4.4 Conclusion

In this section, first, I proposed a new divergence selection method as a im-

provement scheme of SNMF with spectrogram restoration and its hybrid method

to separate the target signal using optimal divergence. The proposed method

switches the optimal divergence in each time frame using a threshold value for

the rate of the chasms to separate and extrapolate the target signal with high

accuracy.

Second, I derived the update rules of proposed SNMF with divergence diver-

sity. These update rules can switch the divergences framewisely and optimize the

variable matrices, simultaneously.

Finally, I conducted the evaluation experiment to confirm the efficacy of the

divergence diversity. Experimental results show that the proposed hybrid method

can always achieve high separation performance under any spatial conditions.
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5. Conclusion

5.1 Summary of thesis

In this thesis, I proposed a new multichannel signal separation method, i.e., a

hybrid method that concatenates SNMF with spectrogram restoration after di-

rectional clustering, which reconstructs the target components lost by preceding

binary masking. From theoretical analysis based on the generation model of the

signal, it was revealed that the optimal divergence in SNMF with spectrogram

restoration, which attempts to fit the trained bases using spectral components

except for the chasms, is shifted to an anti-sparse criterion rather than KL-

divergence because of the trade-off between separation and extrapolation abil-

ities. Based on this finding, I also proposed an improved hybrid method that

switches the divergence to the optimal one framewisely. According to the results

of the evaluation experiments with artificial and real-recorded signals, the pro-

posed method is advantageous to the conventional methods in terms of robustness

and separation performance.

In Sect. 3, I proposed a new SNMF with spectrogram restoration and its

hybrid method for multichannel signal separation. By utilizing the index infor-

mation generated from binary masking, the proposed SNMF regards the spectral

chasms as unseen observations and finally reconstructs the target signal compo-

nents via spectrum extrapolation using supervised bases. In other words, this

SNMF can be categorized as a inpainting-based method because the deteriorated

spectrogram resulting from the preceding binary masking can be recovered by

the supervised basis extrapolation. In addition, a regularization term is added

in the cost function to avoid extrapolation error. The theoretical analysis of the

basis extrapolation ability revealed the mechanism of the marked shift of optimal

divergence in SNMF with spectrogram restoration and the trade-off between sep-

aration and extrapolation abilities owing to the difference of sparseness in each

divergence. Furthermore, the effectiveness of the proposed hybrid method was

confirmed by the evaluation experiments with artificial and real-recorded signals.

In Section 4, I proposed an improved hybrid method. This method switches

the divergence in each frame of the spectrogram according to the rate of chasms

in each frame and a threshold value. Therefore, this method can be considered

55



as a frame-wise diversity of the divergence to achieve both optimal separation

and extrapolation. Experimental results show that the proposed hybrid method

with divergence diversity can always achieve high separation performance under

all spatial conditions.

5.2 Future work

The following points still remain to be investigated or clarified.

• I have not analyzed other types of divergence, such as the divergence be-

tween KL-divergence and EUC-distance. I speculate that the optimal di-

vergence strictly depends on the balance between inherent sparseness of

the signal and the rate of spectral chasms generated by the preceding bi-

nary masking. Therefore, mathematical analysis of the relation between

the divergence and sparseness of the signal is an important future task.

• The proposed SNMF with spectrogram restoration can be used as a post-

filter for target source extraction because it reconstructs the target compo-

nents lost by the preceding process using supervision. For example, we can

iterate the proposed hybrid method to increase the extraction performance

of the target source. The separation accuracy of the iteration method using

SNMF with spectrogram restoration as a postfilter should be analyzed.
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