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Abstruct This paper addresses a new statistical model of
binaural signals and its application to efficient binaural source
separation. Binaural source separation is always required to
retain a spatial cue of the separated sound, such as a head-
related transfer function (HRTF). However, the direct use of
an HRTF is not realistic because this information is normally
not known in advance. To cope with this problem, first, we
focus on the difference between signal probability density
functions at both ears, which can be blindly estimated by us-
ing our previous work on higher-order statistics. Next, we
derive a sound-localization-preserved generalized minimum
mean-square error short-time spectral amplitude estimator.
Objective and subjective experiments show the efficacy of the
proposed method in terms of spatial quality.

1 Introduction

Audio signal separation has received much attention in
signal-processing research, and many studies have been pub-
lished in the last decade. Techniques for signal separation
have been developed for many audio applications, including
target speech enhancement for hearing-aid systems [1] and
for controlling each source in a music tune in interactive 3D
audio systems [2]–[5]. In this paper, we also address such
an audio signal separation problem, especially focusing on a
signal provided in a binaural format [6].

Compared with simple multichannel signal processing,
binaural signal separation includes a relatively difficult task,
namely, extraction of a specific sound while maintaining its
spatial properties. This is because deterioration of the spa-
tial quality of the separated sound has an adverse effect on
human’s 3D audio perception. Several methods have been
proposed for binaural signal separation, mainly for blind
speech separation and enhancement. To preserve a sound-

localization cue such as the interaural level difference, these
methods [7]–[10] apply an equi-binaural spectral gain to both
the left and right ears of the listener, which can be calculated
via, e.g., Wiener filtering (WF) [11] and the minimum mean-
square error short-time spectral amplitude (MMSE-STSA)
estimator [12], [13]. These methods have a drawback that
they do not take account of binaural information. Ideally, the
best way to enhance it is to explicitly use an important spa-
tial cue, such as a head-related transfer function (HRTF) [6].
We have proposed an algorithm [14] to introduce a user’s
HRTF into a multichannel MMSE-STSA estimator but this
method was not a blind system; the accurate measurement
of the HRTF was required in advance, which is sometimes
impossible in practice.

In another context of signal separation such as informed
source separation, the authors have proposed a combination
[15] of supervised nonnegative matrix factorization (SNMF)
[16]–[19] and a prior-model-adapted generalized MMSE-
STSA estimator [20] to deal with music signal separation.
This method requires a certain supervision such as a mu-
sic scale of the target instrument, but it efficiently extracts
a target sound composed with an arbitrary melody from the
observed monaural mixture. In this method, thanks to the
higher-order statistics analysis, hidden parameters of the tar-
get statistical model can be estimated in each frequency sub-
band.

Motivated by the above-mentioned prior work, in this pa-
per, we propose a new spatial-cue-aware binaural signal sep-
aration algorithm without knowing the user’s HRTF. The key
idea and advantages of the proposed method are summarized
as follows: (I) Instead of using an HRTF, we introduce a tar-
get statistical model to express the difference between user’s
left- and right-ear signals. For instance, if the target sound
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is located on the left-hand side, the extracted signal in the
left ear will obey a spiky probability density function (p.d.f.)
but the right-ear signal will have a smooth p.d.f. because of
many diffracted waves and the weak direct wave. (II) The
statistical models for each ear can be accurately determined
using only observable data [15]. Thus, the proposed strategy
is HRTF-blind and a new attempt at establishing a statistical
HRTF approach. (III) Using the same idea as in [10], an equi-
binaural spectral gain is derived on the basis of statistical-
HRTF-adapted generalized MMSE-STSA estimators. This
avoids the marked deterioration of spatial quality.

2 Conventional Method

2.1 Single-Channel Music Signal Enhancement

In our previous work, we proposed single-channel music
signal enhancement based on the generalized Bayesian esti-
mator with automatic target prior adaptation [15]. Here, we
use the SNMF-based dynamic interference spectrogram esti-
mator and closed-form parameter estimation for the statisti-
cal model of the target signal based on higher-order statistics.
The details are described below.

2.1.1 Music signal separation by generalized
MMSE-STSA estimator with automatic target
prior adaptation

We apply short-time Fourier analysis to the observed sig-
nal, which is a mixture of target and interference signals, to
obtain the time-frequency-domain complex-valued signal

x( f , τ)= s( f , τ)+n( f , τ), (1)

where x( f , τ) is the observed signal, s( f , τ) is the target sig-
nal, n( f , τ) is the interference signal, f is the frequency bin
number, and τ is the time-frame index.

For the generalized MMSE-STSA estimator, the amplitude
spectrum of the target signal is estimated on the basis of the
MMSE criterion under a certain target prior. The processed
signal s̃( f , τ) via the generalized MMSE-STSA estimator is
given by

s̃( f , τ) = G( f , τ)x( f , τ), (2)

G( f , τ) =

√
ν( f , τ)
γ( f , τ)

·
(
Γ(ρ+0.5)
Γ(ρ)

· Φ(0.5−ρ, 1,−ν( f , τ))
Φ(1−ρ, 1,−ν( f , τ))

)1/β

,

(3)

where Γ(·) is the gamma function, Φ(a, b; k) = F1(a, b; k)
is the confluent hypergeometric function, β is the amplitude
compression parameter, and

ν( f , τ)= γ̃( f , τ)ξ̃( f , τ)
(
1 + ξ̃( f , τ)

)−1
. (4)

Here, ξ̃( f , τ) and γ̃( f , τ) are the estimated a priori and a pos-
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Fig. 1: Difference in signals at left and right ears.

teriori SNRs, respectively, which are defined as

ξ̃( f , τ) = αγ̃( f , τ − 1)G2( f , τ) + (1 − α)max[γ( f , τ) − 1, 0],
(5)

γ̃( f , τ) =|x( f , τ)|2/Pñ( f ), (6)

where Pñ( f ) is the estimated interference power spectral den-
sity and α is the forgetting factor.

In the generalized MMSE-STSA estimator, the a priori sta-
tistical model of the target signal amplitude spectrum is set to
the chi distribution

p(x) = 2ϕρΓ(ρ)−1x2ρ−1exp(−ϕx2), (7)

where p(x) is the p.d.f. of signal x in the amplitude domain,
ϕ = ρ/E{|x|2}, and ρ is the shape parameter. Here, ρ = 1
gives a Rayleigh distribution that corresponds to a Gaussian
distribution in the time domain, and a smaller value of ρ cor-
responds to a super-Gaussian distribution signal.

In the generalized MMSE-STSA estimator, to calculate
γ̃( f , τ), dynamic estimation is required if the interference sig-
nal is nonstationary, and estimation of the shape parameter ρ,
which depends on the type of target signal, is also required.

2.1.2 Interference estimation by SNMF

The following equation represents the decomposition
model of SNMF using the trained supervision components
F( f , k):

A( f , τ) = |x( f , τ)| ≈
∑

k

F( f , k)V(k, τ) +
∑

n

H( f , n)U(n, τ),

(8)

where F( f , k) is a nonnegative element of the supervised ba-
sis matrix trained in advance, which comprises spectral pat-
terns of the target signal as column vectors, V( f , k) is a non-
negative element of an activation matrix that corresponds to
F( f , k), H( f , n) represents a nonnegative element of the other
basis matrix, which comprises residual spectral patterns that
cannot be expressed by

∑
k F( f , k)V(k, τ), and U(n, τ) is a

nonnegative element of the activation matrix that corresponds
to H( f , n). Moreover, k is the basis index of F( f , k) and n is
the basis index of H( f , n). The supervised basis matrix can be
trained using sample sounds of the target signal in the training
process. Hence, ideally,

∑
k F( f , k)V(k, τ) represents the tar-

get signal components and
∑

n H( f , n)U(n, τ) represents the
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Fig. 2: Conventional and proposed binaural models.

other components different from the target signals after the
decomposition. Thus, (

∑
n H( f , n)U(n, τ))2 is regarded as a

good estimate of PÑ( f ) in (6) in the time-frequency grids.

3 Proposed Method

3.1 Motivation and Strategy
In binaural source separation, it is desirable to use binau-

ral cues such as an HRTF to improve the separation perfor-
mance. However, this is difficult because we cannot obtain
the HRTF of an unknown user blindly. Therefore, consid-
ering the HRTF from a statistical viewpoint, we efficiently
express binaural cues using a statistical model based on the
chi distribution. First, in the binaural signal, the p.d.fs. of the
signals of each ear are assumed to be different by the influ-
ence of the difference in the signals arriving at each ear, and
we can obtain a binaural cue based on the difference in these
p.d.fs. For example, Fig. 1 shows amplitude of left- and right-
ear signals of cello in 6 kHz subband, where the sound comes
from the left-hand side. As shown in this figure, the left-ear
signal contains several dominant components, which yields
spiky p.d.f., but nothing in the right ear. Next, we introduce
the chi distribution to represent the p.d.f. of each ear. By ap-
plying the target prior adaption algorithm [15] to each ear, it
is possible to obtain suitable parameters of the p.d.fs. auto-
matically. This means that we can convert the conventional
deterministic HRTF estimation problem into a parameter es-
timation problem of the corresponding statistical model (see
Fig. 2). This can also enable adaptation to unknown users.

However, there is a problem when we apply this strategy
to a binaural source separation system. Generally speaking,
a statistical-model-based source separation method (e.g., the
generalized MMSE-STSA estimator) only provides the sta-
tistically fluctuating spectral gains for each of ears indepen-
dently. However, the fluctuation of the gain function in inter-
aural level differences at the left and right ears causes the de-
terioration in sound localization. To resolve this problem, we
derive a new optimal spectral gain that minimizes the residual
interference power in terms of the MMSE under the condition
that the spectral gains are equivalent in both ears. Hereafter,

we call this gain the equi-binaural optimal spectral gain.

3.2 Signal Mixture Model

We consider a mixing model with two inputs, i.e., two
ears, and assume that the observed signal contains the tar-
get signal and an interference signal. Hereafter, the ob-
served signal vector in the time-frequency domain, x( f , τ) =
[xL( f , τ), xR( f , τ)]T, is given by

x( f , τ) = h( f )s( f , τ) + n( f , τ), (9)

where h( f ) = [hL( f ), hR( f )]T is the column vector of
the transfer functions between the target source and each
ear, s( f , τ) is the target signal component, and n( f , τ) =
[nL( f , τ), nR( f , τ)]T is the column vector of the interference
signal. Throughout this paper, the subscripts ∗ (∗ = {L,R})
represent the signals obtained at the left and right ears, re-
spectively.

3.3 Derivation of Equi-Binaural Optimal Spectral Gain

The derivation of the equi-binaural optimal spectral gain is
described below. This is the extended version of [10] for a
generalized cost function, and can be formulated as the min-
imization problem of the following error e:

e =E
[{|hL( f )s( f , τ)|β − (G( f , τ)|xL( f , τ)|)β}2

+
{|hR( f )s( f , τ)|β − (G( f , τ)|xR( f , τ)|)β}2

]
, (10)

where G( f , τ) is the equi-binaural spectral gain, which is con-
sidered as a variable. The optimization problem based on (10)
is given by

Gopt( f , τ) = argmin
G( f ,τ)

E
[
{|hL( f )s( f , τ)|β − (GL( f , τ)|xL( f , τ)|)β}2

+ {|hR( f )s( f , τ)|β − (GR( f , τ)|xR( f , τ)|)β}2

+ {(Gβ( f , τ) −GβL( f , τ))|xL( f , τ)|β}2

+ {(Gβ( f , τ) −GβR( f , τ))|xR( f , τ)|β}2 + 2C
]
, (11)

where Gopt( f , τ) is the equi-binaural optimal spectral gain to
be estimated, and GL( f , τ) and GR( f , τ) are individual spec-
tral gains for the L and R ears, respectively, which are aux-
iliary parameters for calculating an approximate solution of
Gopt( f , τ) because the direct Bayesian estimation of Gopt( f , τ)
is difficult. In addition, C is related to the correlation between
the estimation error and the observed signal in each channel
when we estimate the target speech signals in the L and R ears
using the parameters GL( f , τ) and GR( f , τ), and is defined by

C ={Gβ( f , τ) −GβL( f , τ)}
· {(GL( f , τ)|xL( f , τ)|)β − |hL( f , τ)s( f , τ)|β}|xL( f , τ)|β

+ {Gβ( f , τ) −GβR( f , τ)}
· {(GR( f , τ)|xR( f , τ)|)β − |hR( f , τ)s( f , τ)|β}|xR( f , τ)|β.

(12)

We discuss the minimization of (11). First, the 1st and 2nd
terms on the right-hand side correspond to the problem of
target signal estimation in each ear. These terms can be mini-
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mized if we obtain the optimal values of GL( f , τ) and GR( f , τ)
using the generalized MMSE-STSA estimator described in
Sect. 2. Next, C in the 5th term on the right-hand side can
be disregarded if the parameters GL( f , τ) and GR( f , τ) pro-
vide an accurate estimate of the target signals by approxi-
mately considering C to be negligible. Hence, the residual
3rd and 4th terms, i.e., {(Gβ( f , τ) − GβL( f , τ))|xL( f , τ)|β}2 +
{(Gβ( f , τ)−GβR( f , τ))|xR( f , τ)|β}2, should be minimized. This
problem can be formulated as

Gopt( f , τ)

≃ argmin
G( f ,τ)

E
[
{(Gβ( f , τ) −GβLopt

( f , τ))|xL( f , τ)|β}2

+{(Gβ( f , τ) −GβRopt
( f , τ))|xR( f , τ)|β}2

]
, (13)

subject to

GLopt ( f , τ)=argmin
GL( f ,τ)

E
[
{|hL( f )s( f , τ)|β−(GL( f , τ)|xL( f , τ)|)β}2

]
,

(14)
GRopt ( f , τ)=argmin

GR( f ,τ)
E

[
{|hR( f )s( f , τ)|β−(GR( f , τ)|xR( f , τ)|)β}2

]
,

(15)

where GLopt( f , τ) and GRopt( f , τ) are the L- and R-ear optimal
spectral gains, respectively.

To solve (13), we first obtain GLopt( f , τ) and GRopt( f , τ)
from the generalized MMSE-STSA estimator in (14) and
(15), then by substituting them into (13), we solve the fol-
lowing equation in G( f , τ):

∂e
∂G( f , τ)

= Gβ( f , τ)|xL( f , τ)|2β −GβLopt( f , τ)|xL( f , τ)|2β

+Gβ( f , τ)|xR( f , τ)|2β −GβRopt( f , τ)|xR( f , τ)|2β

= 0. (16)

The solution of (16) is given by

Gopt( f , τ)

=

GβLopt( f , τ)|xL( f , τ)|2β +GβRopt( f , τ)|xR( f , τ)|2β

|xL( f , τ)|2β + |xR( f , τ)|2β


1/β

.

(17)

3.4 Shape Parameter and Kurtosis

In (17), we need to calculate GLopt( f , τ) and GRopt( f , τ),
which include a shape parameter ρ that should represent the
a priori distribution of the target signal. In Sects. 3.4 and 3.5,
we describe how to blindly estimate ρ.

Regarding the chi distribution p(x) in (7), the mth-order
moment can be written as

µm(x) =
∫ ∞

0
xm p(x)dx =

Γ(ρ + m
2 )

Γ(ρ)
ϕ−

m
2 . (18)

Then, the kurtosis of the chi distribution is calculated as

kurt = µ4(x)/µ2
2(x) = (ρ + 1)/ρ. (19)

Therefore, the shape parameter ρ is given by

ρ = (kurt − 1)−1. (20)

From this relation, the shape parameter of the target signal
can be estimated by obtaining its amplitude-domain kurtosis
value. In general, however, it is difficult to directly estimate
the kurtosis of a target signal because of its contamination by
additive interference signals.

3.5 Estimation of Hidden Target Kurtosis and Gain
Function

In our previous work, we proposed an algorithm for target
kurtosis estimation in additive signals, which can be derived
from the closed-form relation in higher-order statistics. In
this algorithm, the resultant kurtosis of the target amplitude
spectrum is estimated as

kurt∗ =

µ4(A∗) − µ4

∑
n

(HU)∗


+4µ2

2(
∑

n

(HU)∗)−4µ2(A∗)µ2(
∑

n

(HU)∗)


·

µ2
2(A∗)+µ2

2(
∑

n

(HU)∗)−2µ2(A∗)µ2(
∑

n

(HU)∗)

−1

,

(21)

where we ignore the indexes f and τ for saving the space. For
the detailed derivation of (21), see Ref. [15].

The shape parameter of the target signal p.d.f. at each ear
can be estimated using the kurtosis and (20). Therefore, the
equi-binaural optimal spectral gain estimated by the proposed
method is obtained as follows by substituting (2) into (17):

G̃opt( f , τ)

=

{ |xL( f , τ)|2β(ν̃L( f , τ))β/2Γ
(
(kurtL − 1)−1 + 0.5

)
{|xL( f , τ)|2β + |xR( f , τ)|2β}γ̂βL( f , τ)Γ

(
(kurtL − 1)−1)

· Φ(0.5 − (kurtL − 1)−1, 1,−ν̃L( f , τ))
Φ(1 − (kurtL − 1)−1, 1,−ν̃L( f , τ))

+
|xR( f , τ)|2β(ν̃R( f , τ))β/2Γ

(
(kurtR − 1)−1 + 0.5

)
{|xL( f , τ)|2β + |xR( f , τ)|2β}γ̂βR( f , τ)Γ

(
(kurtR − 1)−1)

· Φ(0.5 − (kurtR − 1)−1, 1,−ν̃R( f , τ))
Φ(1 − (kurtR − 1)−1, 1,−ν̃R( f , τ))

}1/β

. (22)

The final output is given by s̃∗( f , τ) = G̃opt( f , τ)x∗( f , τ).

4 Evaluation Experiments

4.1 Experimental Conditions

In this experiment, we used four binaural instrumental sig-
nals, namely, an oboe, clarinet, cello, and piano, where the
target instrument s( f , τ) is the oboe (each melody part is de-
picted in [15]). These signals were artificially generated by
a MIDI synthesizer and the directions of arrival of these sig-
nals were set from −90◦ to 90◦ with 15◦ intervals by using the
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corresponding HRTF h( f ). The HRTFs were selected from
the open database of the “Samurai” dummy head [21]. The
observed signals were produced by mixing two sources se-
lected from the target signal and the other three signals with
the same power. In this observed signal, the target and in-
terference signals were located in the same direction. In the
estimation of the interference signal using SNMF, we used
artificial clean MIDI sounds of the target instrument without
an HRTF as supervision for the training process. The train-
ing sounds contained two octave notes that covered all the
notes of the target signal in the observed signal. The sam-
pling frequency of all signals was 44.1 kHz. Spectrograms
were computed using a 92-ms-long rectangular window with
an 11-ms-long overlap shift. Moreover, the number of trained
bases was 100 and the number of other bases was 50. The
forgetting factor α was 0.97, and the amplitude compression
parameter β was 1.0.

4.2 Objective Experiment

In the objective experiment, we compared six methods,
i.e., SNMF (SNMF) [19], the equi-binaural spectral gain
via WF (Equi-gain WF) [9], the equi-binaural spectral
gain via the MMSE-STSA estimator (Equi-gain MMSE-
STSA) [10], the minimum-gain-based MMSE-STSA estima-
tor (Gain-min MMSE-STSA) [8], the generalized MMSE-
STSA estimators independently applied to each ear (Gen-
eralized MMSE-STSA), and the equi-binaural spectral
gain via the generalized MMSE-STSA estimator (Proposed
method). Every method uses the same SNMF as the interfer-
ence estimator. We used the signal-to-distortion ratio (SDR)
defined in [22] as the evaluation score. The SDR indicates
the overall quality of the separated target sound, and is high
in the case of high separation, low artificial distortion, and

low spatial distortion.
Figure 3 shows the average SDRs for each method and

each direction. From these results, we can confirm that the
separation performance of the proposed method is better than
those of the other methods. This result indicates the ef-
ficacy of introducing the flexible a priori statistical model
of the target signal and equi-binaural spectral gain. The
simple MMSE-STSA estimators (Equi-gain MMSE-STSA
and Gain-min MMSE-STSA) also assume the fixed a priori
model of the Gaussian distribution but the assumption is not
appropriate for representing a music signal and a spatial dif-
ference between both ears. In contrast, the proposed method
automatically chooses a spikier p.d.f. (ρ ≪ 1) for the ear
closer to the source location and a smoother p.d.f. (ρ ≃ 1) for
the opposite ear. These p.d.fs. match the binaural target.

4.3 Subjective Experiment

We next conducted a subjective test to evaluate the per-
formance of the proposed method, focusing on the human
impression of the separated signal from the viewpoint of spa-
tial quality. In the subjective experiment, we employed the
XAB method and compared two methods, i.e., Generalized
MMSE-STSA and Proposed method. The participants in the
experiment comprised four males and two females.

Figure 4 shows the result of the subjective experiment,
which indicates that the proposed method using the equi-
binaural spectral gain markedly outperforms Generalized
MMSE-STSA. Therefore, we confirmed the effectiveness of
using the equi-binaural spectral gain to improve the spatial
quality.

5 Conclusion

In this paper, to address the effect of statistical models for
both ears on binaural signal source separation, we applied
the generalized MMSE-STSA estimator with automatic prior
adaptation to a binaural signal. The proposed method of bin-
aural signal separation using equi-binaural spectral gain can
also improve the sound-localization properties. From the re-
sults of and subjective experiments, it was found that the pro-
posed method outperforms conventional methods from the
viewpoint of separation performance and sound-localization
preservation.
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