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PAPER

Noise Robust Acoustic Anomaly Detection System with Nonnegative
Matrix Factorization Based on Generalized Gaussian Distribution∗

Akihito AIBA†a), Minoru YOSHIDA†, Nonmembers, Daichi KITAMURA††,†††, Member,
Shinnosuke TAKAMICHI†††, Nonmember, and Hiroshi SARUWATARI†††, Member

SUMMARY We studied an acoustic anomaly detection system for
equipments, where the outlier detection method based on recorded sounds
is used. In a real environment, the SNR of the target sound against back-
ground noise is low, and there is the problem that it is necessary to catch
slight changes in sound buried in noise. In this paper, we propose a sys-
tem in which a sound source extraction process is provided at the prelim-
inary stage of the outlier detection process. In the proposed system, non-
negative matrix factorization based on generalized Gaussian distribution
(GGD-NMF) is used as a sound source extraction process. We evaluated
the improvement of the anomaly detection performance in a low-SNR en-
vironment. In this experiment, SNR capable of detecting an anomaly was
greatly improved by providing GGD-NMF for preprocessing.
key words: nonnegative matrix factorization, generalized Gaussian distri-
bution, anomaly detection, outlier detection

1. Introduction

Several systems have been proposed with which abnormal
operation is detected from sensor signals by constantly sens-
ing the state of facilities such as water supply and drainage
and air conditioning in place of human beings [1], [2]. Here,
we consider an anomaly detection system based on the op-
erating sound recorded by a microphone.

One of the major problems in anomaly detection ap-
plications is the difficulty in obtaining samples at anoma-
lous times. In particular, it is difficult to intentionally create
an anomalous state of a facility that is expensive and im-
portant for building management, for the purpose of sample
collection. Also, waiting for a naturally occurring anomaly
is impractical as some anomalies occur only once every few
months or years. For this reason, outlier detection is of-
ten adopted in anomaly detection applications [3], [4]. In
outlier detection, only easily available normal samples are
collected in advance. Then their features are modeled, and
samples that deviate from the model are judged to be anoma-
lies when obtained. In this research, we also use this outlier
detection approach.
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When sound data is used as input, the background noise
in a real environment also becomes a problem. We often
see a situation where multiple equipment units are installed
in one room and generate very loud operation noise. In
such a situation, even if the operation sound of one device
shows an abnormal feature, its detection is very difficult be-
cause the signal power of the anomalous sound is lower
than that of the operation sound of other devices. This is
a common problem not only in outlier detection but also in
sound discrimination. There are existing methods for im-
proving the SNR by extracting sound sources before dis-
crimination [5], [6].

In this paper, a method based on nonnegative matrix
factorization (NMF) [7] is used for sound source extraction
processing. Regarding the sound source extraction, deep
neural network (DNN)-based processing [8]–[10] has been
proposed for general use in recent years. However, it can-
not be introduced in our anomaly detection application be-
cause DNN requires an enormous number of clean objec-
tive sounds but we cannot obtain them in advance. On the
other hand, the proposed NMF-based method has an ad-
vantage to requiring no clean data. In particular, we ex-
tend the NMF based on generalized Gaussian distribution
(GGD-NMF) [11] proposed by Kitamura to a semisuper-
vised NMF (SS-NMF) [12], [13] and confirm its efficacy in
the anomaly detection system. GGD-NMF incorporates a
generative model based on GGD into NMF to control the
low-rank property during decomposition. The evaluation is
performed using data recorded in a real environment.

This paper is organized as follows. In Sect. 2, we in-
troduce the basis theory of NMF and its application to audio
signals. In Sect. 3, the details of the proposed anomaly de-
tection system are explained. The experimental evaluation
of the proposed system is described in Sect. 4. The paper is
concluded in Sect. 5.

2. Conventional NMF

In this section, the NMF algorithm is described first. Next,
Itakura–Saito NMF (ISNMF) [14], which has a Gaussian-
distribution-based generative model, is introduced.

2.1 NMF

NMF is a mathematical algorithm for extracting a limited
number of nonnegative features from a nonnegative matrix.

Copyright c⃝ 2021 The Institute of Electronics, Information and Communication Engineers
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Let X ∈ RI×J
≥0 be a nonnegative observation matrix to be

analyzed. In the field of acoustics, the complex spectro-
gram C ∈ CI×J is obtained by applying short-time Fourier
transform (STFT) to the time-domain signal. Then, the non-
negative spectrogram X is calculated from C, e.g., the am-
plitude spectrogram (X = |C|.1) or the power spectrogram
(X = |C|.2), where | · |.p returns a matrix with the element-
wise absolute value and the pth power of the input matrix.
I and J are the numbers of rows and columns in X, respec-
tively. In the case of a spectrogram, I and J correspond to
the numbers of frequency bins and time frames, respectively.

NMF is an approximate decomposition as follows:

X ≈ X̂ = FG (1)

=
∑

k

f kg
T
k , (2)

where F = ( f 1 . . . f K) ∈ RI×K
≥0 is the basis matrix, and

G = (g1 . . . gK)T ∈ RK×J
≥0 is the coefficient matrix or acti-

vation matrix. k = 1, 2, . . . ,K is the index of bases. K is the
number of bases and is generally set to a value sufficiently
smaller than I and J. Therefore, Eq. (1) is interpreted as a
low-rank approximation that represents the observation ma-
trix X with a limited number of bases. The basis vectors
f k ∈ RI

≥0 represent the frequently appearing spectral pat-
terns (parts) in the spectrogram X, and the activation vectors
gk ∈ RJ

≥0 represent their time-varying gains [11].
The matrix variables F and G can be estimated by solv-

ing the following optimization problem:

min
F,G
D(X|FG) s.t. fik, gk j ≥ 0 ∀i, j, k, (3)

where i = 1, 2, . . . , I is the index of frequency bins and
j = 1, 2, . . . , J is the index of time frames. fik and gk j are
the elements of F and G, respectively. D(·|·) is a similarity
function between two input matrices. For example, squared
Euclidean distance [15], generalized Kullbak–Leibler (KL)
divergence [15], and Itakura–Saito (IS) divergence [14] are
often used.

2.2 ISNMF

In this section, we consider NMF based on IS divergence for
the similarity functionD in Eq. (3) (ISNMF). IS divergence
is a similarity function defined as

DIS(c|σ) =
|c|2
σ2
− log

|c|2
σ2
− 1. (4)

By setting |c|2 = xi j and σ2 =
∑

k fikgk j, we can rewrite the
optimization problem of ISNMF as

min
F,G

∑
i, j

 xi j∑
k fikgk j

+ log
∑

k

fikgk j


s.t. fik, gk j ≥ 0 ∀i, j, k, (5)

where xi j is the element of the complex spectrogram X and
the constant terms are omitted.

In ISNMF, a generative model of the complex spectro-
gram C is assumed as described below. Let us assume that
each time-frequency element of the complex spectrogram C,
ci j, can be decomposed into K spectral components ci j,k as
ci j =

∑
k ci j,k, and ci j,k is assumed to be generated from a

zero-mean circularly symmetric complex Gaussian distribu-
tion with the variance σ2

i j,k > 0 [14]. Then, the generative
model of the complex spectrogram C becomes

C ∼
∏
i, j

p(ci j) =
∏
i, j

NC
0,∑

k

σ2
i j,k

 . (6)

On the basis of this generative model, we consider
the maximum likelihood estimation problem of the variance
σ2

i j,k. The negative log-likelihood function of C is

− logL = − log
∏
i, j

NC
0,∑

k

σ2
i j,k


=

∑
i, j

 |ci j|2∑
k σ

2
i j,k

+ log
∑

k

σ2
i j,k + log π

 . (7)

The maximum likelihood estimate of the variance σ2
i j,k can

be obtained by minimizing Eq. (7). Here, when comparing
Eq. (7) with the ISNMF minimization problem (5), if xi j =

|ci j|2 and σ2
i j,k = fikgk j, both equations become equivalent up

to the constant term.
From the above, it is seen that applying ISNMF to the

power spectrogram X = |C|.2 is equivalent to the maximum
likelihood estimation of the variance σ2

i j,k based on the gen-
erative model (6).

3. Proposed System

In this section, GGD-NMF is described first. Then, we de-
scribe the proposed system that extends GGD-NMF to SS-
NMF and incorporates it into the anomaly detection system.

3.1 GGD-NMF

In ISNMF, a complex Gaussian distribution is assumed as
a generative model of the observation complex spectrogram
C. GGD-NMF is a generalization of ISNMF, which assumes
the complex GGD as a generative model of C.

By denoting the circularly symmetric complex GGD
with the mean value 0, shape parameter ρ > 0, and scale
parameters σi j that fluctuate along time and frequency as
GC(ci j; 0, ρ, σi j), we can describe the generative model in
GGD-NMF as

C ∼
∏
i, j

GC(ci j; 0, ρ, σi j)

=
∏
i, j

ρ1− 2
ρ

21− 2
ρ πσ2

i jΓ (2/ρ)
exp

[
−2
ρ

( |ci j|
σi j

)ρ]
, (8)

σ
p
i j =

∑
k

fikgk j, (9)
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where Γ(·) is the gamma function and p is a domain parame-
ter corresponding to the domain of the low-rank approxima-
tion. In the case of p = 1, the amplitude spectrogram |C|.1
is modeled by NMF variables (F and G), and in the case of
p = 2, the power spectrogram |C|.2 is modeled. The complex
GGD GC(ci j; 0, ρ, σi j) becomes equivalent to the complex
Gaussian distribution and the complex Laplace distribution
when ρ = 2 and ρ = 1, respectively. Also, the complex
GGD becomes sub- and super-Gaussian when ρ > 2 and
ρ < 2, respectively.

In the generative model (8), the complex GGD is inde-
pendently defined in each time-frequency slot, and its scale
parameter σi j can fluctuate along time and frequency axes.
In this case, the macro model that includes all the time-
frequency slots, i.e., the generative model of the spectro-
gram C, always approaches to a super-Gaussian distribution
when σi j dynamically varies along i and j [16]. For this
reason, the generative model (8) with sub-Gaussian GGD
(ρ > 2) has a versatility as depicted in Fig. 1 in [16], namely,
the macro model of Eq. (8) with ρ > 2 becomes either sub-
Gaussian or super-Gaussian. This versatile model is de-
sirable and often provides improved performance in NMF-
based acoustic modeling [16], [17].

Let us clarify the relationship between the generative
model (8) and the similarity function in NMF. The diver-
gence based on the complex GGD is derived from the dif-
ference in log-likelihood (deviance). The divergence can be
calculated as follows [11]:

DGGD(c||σ) = −2 log |c| − 2
ρ
+ 2 logσ +

2
ρ

(
|c|
σ

)ρ
=

2
ρ

[(
|c|
σ

)ρ
− log

(
|c|
σ

)ρ
− 1

]
. (10)

This divergence (10) can be interpreted as a generalization
of IS divergence (4) for the shape parameter ρ. From the
above, the function to be minimized in GGD-NMF is as fol-
lows (except for the constant term):

∑
i, j

DGGD(ci j|σi j) =
∑
i, j

 |ci j|ρ(∑
k fikgk j

) ρ
p

+
ρ

p
log

∑
k

fikgk j

 . (11)

Thus, GGD-NMF (Eq. (11)) and ISNMF (Eq. (5)) are equiv-
alent algorithms when ρ = p and xi j = |c|p.

The variables fik and gk j that minimize Eq. (11) can be
calculated by the auxiliary function technique. The update
rules are derived as follows [11], [18]:

fik ← fik


∑

j
zi j

(∑k′ fik′gk′ j)2 gk j∑
j

1∑
k′ fik′gk′ j

gk j


p
ρ+p

, (12)

gk j ← gk j


∑

i
zi j

(∑k′ fik′gk′ j)2 fik∑
i

1∑
k′ fik′gk′ j

fik


p
ρ+p

, (13)

zi j =

(∣∣∣ci j

∣∣∣ ρp σ1− ρp
i j

)p

. (14)

In the update rules, zi j is regarded as a virtual observation
consisting of the weighted geometric mean of the observa-
tion |ci j| and its low-rank model σi j, and GGD-NMF is inter-
preted as ISNMF on this virtual observation. When ρ = p,
the virtual observation becomes zi j = |ci j|p, which coincides
with the original ISNMF. When ρ < p, since the virtual
observation zi j is the weighted geometric mean of |ci j| and
σi j, GGD-NMF tends to prevent σi j from an overfitting to
the observation |ci j|. This is because a heavy-tailed (super-
Gaussian) distribution is assumed and it allows outliers in
|ci j|, resulting in low-rank-enhanced NMF modeling. On the
other hand, when ρ > p, the geometric mean corresponds to
the point externally dividing |ci j| and σi j, and the error with
the current approximation is further emphasized, which mit-
igates the excessive low-rank modeling [11]. Thus, in GGD-
NMF, it is possible to control the low-rank property of the
approximated model by adjusting the parameters ρ and p.

3.2 GGD-Based SS-NMF

In SS-NMF [12], [13], we have a sample sound (training
dataset) of one source, and its basis matrix is trained in ad-
vance by decomposing the sample sound using simple NMF.
Then, the observed mixture spectrogram X is divided into
the components with the pretrained (supervised) basis ma-
trix and the other basis matrix as

X ≈ FG + HU

=
∑

k

f kgk +
∑

l

hlul, (15)

where F is the pretrained basis matrix that has spectral pat-
terns of the target source, and H = (h1 . . . hL) ∈ RI×L

≥0 is
the other basis matrix estimated in the separation stage and
represents the spectral patterns of the other sources in X. G
and U = (u1 . . . uL)T ∈ RL×J

≥0 are the coefficient matrices for
F and H, respectively, and both are also estimated in the
separation stage. L is the number of other bases in H, and
l = 1, 2, . . . , L is their index.

The matrices G, H, and U can be estimated by the fol-
lowing optimization problem, which is the separation stage
of SS-NMF.

min
H,G,U

D(X|FG + HU)

s.t. gk j, hil, ul j ≥ 0 ∀i, j, k, l (16)

Since F contains the spectral patterns of the target source
and is fixed in the optimization of Eq. (16), FG and HU
correspond to the estimated nonnegative spectrograms of the
target source and the other source components, respectively.
Note that the similarity function D(·|·) must be the same as
that used in the training of F.

In the proposed system, we introduce GGD-NMF into
the framework of SS-NMF. The function to be minimized
changes from Eq. (11) as follows:
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Fig. 1 System overview.

∑
i, j

DGGD(ci j|σi j) =
∑
i, j

[( |ci j|
σi j

)ρ
+ ρ logσi j

]
, (17)

σ
p
i j =

∑
k

fikgk j +
∑

l

hilul j. (18)

The variables that minimize Eq. (17) can be calculated by
the auxiliary function technique similarly to the derivation
of Eqs. (12) and (13) [18]. The update rules for solving
GGD-based SS-NMF are derived as

gk j ← gk j


∑

i
zi j

(∑k′ fik′gk′ j+
∑

l′ hil′ul′ j)2 fik∑
i

1
(∑k′ fik′gk′ j+

∑
l′ hil′ul′ j)

fik


p
ρ+p

, (19)

hil ← hil


∑

j
zi j

(∑k′ fik′gk′ j+
∑

l′ hil′ul′ j)2 ul j∑
j

1
(∑k′ fik′gk′ j+

∑
l′ hil′ul′ j)

ul j


p
ρ+p

, (20)

ul j ← ul j


∑

i
zi j

(∑k′ fik′gk′ j+
∑

l′ hil′ul′ j)2 hil∑
i

1
(∑k′ fik′gk′ j+

∑
l′ hil′ul′ j)

hil


p
ρ+p

, (21)

zi j =

(∣∣∣ci j

∣∣∣ ρp σ1− ρp
i j

)p

. (22)

3.3 System Overview

Figure 1 shows the overview of the proposed system using
GGD-NMF for anomaly detection. GGD-NMF is expected
to be effective in improving the anomaly detection perfor-
mance even in a low-SNR environment. The proposed sys-
tem consists of the following three major steps.

1. Basis training step: training the basis matrix F0 for
background noise.

2. Detector training step: training to learn the normal op-
eration sound of a target machine, which is extracted
by GGD-based SS-NMF.

3. Detection step: detecting anomalies from the extracted
machine-operation sound.

The details of each step are described below.

3.4 Basis Training Step

In the proposed system, first, we obtain the basis matrix
of background noise. A time-domain sound signal x0 is
recorded when the target machine is not operating and only
background noise exists. The spectrogram of x0, X0 ∈
RΩ×T0

≥0 is obtained by STFT, where Ω and T0 are the num-
bers of frequency bins and time frames, respectively. It can
be considered as a noise sample spectrogram N0 ∈ RΩ×T0

≥0
because X0 does not include the operation sound of the tar-
get machine. Then, N0 is decomposed by GGD-NMF as

X0 = N0 ≈ F0W0, (23)

where F0 ∈ RΩ×K
≥0 is a basis matrix for background noise and

W0 ∈ RK×T0

≥0 is a coefficient matrix for F0. As a result, the
basis matrix that represents only background noise sepectra
is obtained in this training process.

3.5 Detector Training Step

In the detector training step, the operation sound of the tar-
get machine is extracted from the noisy mixture sound, and
the extracted sound is used to train the anomaly detector. To
extract the operation sound of the target machine, the basis
matrix F0 obtained in the basis training step is used.

We prepare a noisy sound dataset {x(1)
1 , x

(2)
1 , . . . , x

(N)
1 }

recorded when the target machine was operating normally
in a noisy environment. Their nonnegative spectrograms
{X(1)

1 , X
(2)
1 , . . . , X

(N)
1 } are calculated by STFT, where X(n)

1 ∈
R
Ω×T (n)

1
≥0 , T (n)

1 is the number of time frames, N is the number
of samples in the dataset, and n = 1, 2, . . . ,N is their index.
We assume that X(n)

1 can be approximated as the sum of two
nonnegative spectrograms as

X(n)
1 ≃ S(n)

1 + N(n)
1 , (24)

where S(n)
1 ∈ RΩ×T (n)

1
≥0 and N(n)

1 ∈ RΩ×T (n)
1

≥0 are the nonnega-
tive spectrograms of the clean operation sound of the target
machine and the background noise, respectively.

In the detector training step, first, the observed noisy
mixture X(n)

1 is decomposed into two estimates, i.e., the

background noise Ñ
(n)
1 and the operation sound of the target

machine S̃
(n)
1 , by GGD-based SS-NMF with the pretrained

basis matrix F0 as follows:

X(n)
1 ≃ S̃

(n)
1 + Ñ

(n)
1 , (25)

S̃
(n)
1 = H(n)

1 U(n)
1 , (26)

Ñ
(n)
1 = F0G(n)

1 , (27)

where H(n)
1 ∈ RΩ×L

≥0 and U(n)
1 ∈ R

L×T (n)
1

≥0 are the basis and co-
efficient matrices that correspond to the operation sound of

the target machine as Eq. (26) and G(n)
1 ∈ R

K×T (n)
1

≥0 is the co-
efficient matrix of F0, which corresponds to the background
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noise as Eq. (27).
Next, the anomaly detector is trained using the ex-

tracted normal operation sound S̃
(n)
1 as the training data. In

the proposed system, we use an outlier detection method
with Autoencoder (AE) [4]. AE is a neural network trained
to reconstruct input data through dimensional compression.
For this reason, the reconstruction error of the trained AE
becomes smaller for known inputs, whereas the reconstruc-
tion error becomes larger for unknown inputs. Thus, it is
possible to detect outliers on the basis of the reconstruction
error.

A parameter of AE, Θ, is optimized by minimizing a
loss function J :

J(Θ) = E
[∥∥∥∥S′(n,m)

1 − fAE

{
S′(n,m)

1

∣∣∣Θ}∥∥∥∥2

2

]
n,m
, (28)

S′(n,m)
1 =

∣∣∣∣S̃(n,m)
1

∣∣∣∣. pAE
p
, (29)

where S̃
(n,m)
1 ∈ RΩ×TAE

≥0 is a spectrogram piece cut out from

S̃
(n)
1 every time frame number TAE, m = 1, 2, . . . ,Mn is the

index of cut spectrogram pieces, and Mn is the number of
cut spectrogram pieces for the nth sample sound. Function
fAE{· | Θ} represents the processing of AE with the given
parameter Θ and pAE is a domain parameter used in AE.

3.6 Detection Step

In the detection step, a sound signal x2 is recorded when
the target machine is operating in a noisy environment. Its
nonnegative spectrogram X2 is obtained by STFT, where
X2 ∈ RΩ×T2

≥0 , and T2 is the number of time frames. The
operation sound of the target machine is extracted from X2

by GGD-based SS-NMF with F0, as follows:

X2 ≃ F0G2 + H2U2, (30)

S̃2 = H2U2, (31)

where S̃2 ∈ RΩ×T2
≥0 is the nonnegative spectrogram of a clean

operation sound of the target machine, H2 ∈ RΩ×L
≥0 and U2 ∈

RL×T2
≥0 are respectively the basis and coefficient matrices that

correspond to the operation sound of the target machine as
Eq. (31), and G2 ∈ RK×T2

≥0 is the coefficient matrix of F0,
which corresponds to the background noise.

The anomaly score α is calculated as follows:

α =
1
M

M∑
m=1

∥∥∥∥S′(m)
2 − fAE

{
S′(m)

2

∣∣∣Θ}∥∥∥∥2

2
, (32)

S′(m)
2 =

∣∣∣∣S̃(m)
2

∣∣∣∣. pAE
p
, (33)

where S̃
(m)
2 ∈ RΩ×TAE

≥0 is the spectrogram piece cut out from
S̃2 every time frame number TAE. The threshold value ϕ is
determined in advance, and if α > ϕ, it is judged that an
anomaly has occurred on the target machine.

4. Evaluation

In this section, the anomaly detection performance of the

Table 1 Dataset

Items SNR Time

Training Background noise - 0.4 h
basis matrix F

Training Normal bearing sound −24 dB 2.0 h
detector + background noise

Normal bearing sound −24 dB 5.2 h
Testing + background noise

detection Abnormal bearing sound −12 dB 5.2 h
+ background noise −18 dB 5.2 h

−24 dB 5.2 h

proposed system is evaluated. To confirm the validity of
the target source extraction process, a system without GGD-
NMF (omitting basis training step and GGD-based SS-NMF
in the other steps from the proposed system) and the pro-
posed system with various parameter settings were com-
pared.

4.1 Experimental Conditions

Two types of data, normal and abnormal, were used as sam-
ples of the sound to be detected from a dataset published by
Case Western Reserve University Bearing Data Center [19].
This dataset consists of vibration signal data from motor
bearings acquired using an acceleration sensor and also in-
cludes vibration data of normal bearings and abnormal bear-
ings with scratches. The data used as normal were ”Nor-
mal 2” of ”Normal Baseline Data,” and the data used as
abnormal were ”OR007@6 2” of ”48k Drive End Bearing
Fault Data.”

As the background noise, the sound recorded in the
equipment room at the Ebina Office of Ricoh Co., Ltd., was
used, where several machines such as pumps were operating
in the same room. The total recording time was about 5.2 h
(18770 s).

These data were mixed, and the experimental data were
prepared as shown in Table 1. To train the basis matrix F0,
we used 1440-s-long background noise, which was a differ-
ent time period from the background noise sound for train-
ing the detector (AE). The background noise for the detec-
tion test includes the time periods used for training the basis
matrix and the detector. The volume of background noise is
constant in each dataset, namely, when the SNR is changed,
only the volume of the bearing is changed. Since the bear-
ing vibration data have a length of only 10 s for both normal
and anomaly cases, the background noise data was divided
every 10 s, and each divided time period was mixed with the
bearing vibration data.

AE for anomaly detection consists of four fully con-
nected layers of the encoder and decoder. The input and
output spectrograms are treated as one-dimensional vectors.
The number of nodes in each layer of the encoder is halved
in order from the input layer, and the decoder has the oppo-
site configuration. Batch normalization [20] is performed on
the output of each layer. The ReLU function [21] was used
as the activation function. Other experimental conditions are
shown in Table 2.
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4.2 Experimental Results and Considerations

Figure 2 shows the performance evaluation results of each
system. Here, the threshold ϕ for anomaly detection is ex-
perimentally determined to be the highest F-measure. In the
comparison of the cases without and with NMF preprocess-

Table 2 Experimental conditions

Sampling rate 32000 Hz
Window length / shift length 10 ms / 5 ms

FFT length 512 points (16 ms)
NMF Number of bases 256

in F0 (K)
Number of bases 1

in H1 and H2 (L)
Power spectrogram

Feature 256 dimensions × 32 frames
AE (pAE = 2,Ω = 256,TAE = 32)

Structure Autoencoder
Nodes 8192-4096-2048-1024

-1024-2048-4096-8192
Epoch 200

Fig. 2 F-measure values with various GGD-NMF parameters.

Fig. 3 Precision–Recall curves under each SNR condition.

ing, the case with preprocessing shows a higher F-measure
(with suitable parameter settings). Therefore, it is consid-
ered that noise reduction by NMF is an effective preprocess-
ing approach for anomaly detection.

For each case of without NMF, with ISNMF (p = 0.5),
and with GGD-NMF (ρ = 4.0 and p = 0.5), the precision–
recall curves under each SNR condition are shown in Fig. 3.
GGD-NMF has better characteristics than ISNMF, and it is
considered that a superior anomaly detection model is gen-
erated. Since high performance is obtained in the case of
ρ > p, it is considered that the mitigation of the low-rank
property in NMF modeling is effective for anomaly detec-
tion. This is because the mitigation of the low-rank property
in the NMF decomposition does not tolerate spectral out-
liers in the spectrogram, namely, GGD-NMF captures the
detailed spectral differences between the normal and abnor-
mal bearing sounds. The mitigation of the low-rank prop-
erty is derived from the generative model of sub-Gaussian
distribution, which corresponds to ρ > 2. To the best of
our knowledge, no sub-Gaussian-model-based NMF exists
other than GGD-NMF. Thus, the proposed system can be
considered as the first practical application of sub-Gaussian
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Fig. 4 Examples of power spectrograms of (a) normal bearing vibration,
(b) mixed sound of (a) and background noise (SNR: −24 dB), (c) sound
extracted by ISNMF (p = 0.5) from (b), and (d) sound extracted by GGD-
NMF (ρ = 4.0, p = 0.5) from (b).

Fig. 5 Examples of power spectrograms of (a) abnormal bearing vibra-
tion, (b) mixed sound of (a) and background noise (SNR: −24 dB), (c)
sound extracted by ISNMF (p = 0.5) from (b), and (d) sound extracted by
GGD-NMF (ρ = 4.0, p = 0.5) from (b).

NMF, which gives superior performance in an actual task.
In addition, the macro model of Eq. (8) with ρ > 2 has a
versatility as described in Sect. 3.1. This property also con-
tributed to the improvement of the proposed anomaly detec-
tion performance.

The effect of GGD-NMF is analyzed from the actual
processed signals. Figure 4 shows the examples of nor-
mal spectrogram and Fig. 5 shows the examples of abnormal
spectrogram. It can be seen that GGD-NMF extracts fea-
tures of the bearing vibration from the background noise as
well as ISNMF does; however, there exists slight difference
around 3 kHz between GGD-NMF and ISNMF in Fig. 5(d).
To analyze the difference in detail, we next show Figs. 6 and
7 that depict the mean power spectra of the signals extracted
by ISNMF (p = 0.5) and GGD-NMF (ρ = 4.0, p = 0.5),
respectively. The larger the difference between the nor-
mal and anomaly spectra becomes, the more effective the
source extraction process is for anomaly detection. The
spectra extracted by GGD-NMF show a greater difference
between the normal and abnormal cases in the band of ap-

Fig. 6 Mean power spectrum of sounds extracted by ISNMF (p = 0.5).

Fig. 7 Mean power spectrum of sounds extracted by GGD-NMF (ρ =
4.0, p = 0.5).

proximately 3.0–3.3 kHz than those of ISNMF. This dif-
ference is likely to affect the F-measure values. At the
3187.5 Hz frequency bin, the differences between the nor-
mal and abnormal mean power spectra extracted by GGD-
NMF are greater than those of ISNMF by 5.5 dB (under
SNR = −12 dB), 2.4 dB (under SNR = −18 dB), and 0.6 dB
(under SNR = −24 dB).

5. Conclusion

In this study, we aimed to improve the performance of the
anomaly detection system in a low-SNR environment. For
this purpose, we proposed an anomaly detection system
based on the outlier detection method with target sound ex-
traction based on GGD-NMF.

From the results of evaluation experiments, it was con-
firmed that the proposed system can improve the detection
performance in low-SNR environments compared with a
system without preprocessing. In addition, the mitigation of
the low-rank property in NMF resulted in a decomposition
more suitable for anomaly detection.
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