[招待講演] 独立低ランク行列分析に基づく音源分離とその発展

北村 大地†

†香川高等専門学校 〒761-8058 香川県高松市勅使町 355 E-mail: †kitamura-d@t.kagawa-nct.ac.jp

あらまし 複数の音源が混合した観測信号から,混合前の音源信号を推定する技術を音源分離と呼ぶ.特に,音源や マイクロフォンの空間的配置が未知の条件の音源分離はブラインド音源分離と呼ばれ,その重要性から20年以上研究 されてきた歴史を持つ.本講演では,ブラインド音源分離の新しいアルゴリズムの一つである独立低ランク行列分析 に焦点を当て,その基本原理から近年の発展までの簡単な説明と紹介を行う.

キーワード ブラインド音源分離,独立成分分析,非負値行列因子分解,深層学習,スペクトログラム無矛盾性

[Invited Talk] Audio Source Separation Based on Independent Low-Rank Matrix Analysis and Its Extensions

Daichi KITAMURA[†]

† National Institute of Technology, Kagawa College 355 Chokushi, Takamatsu, Kagawa, 761–8058 Japan E-mail: †kitamura-d@t.kagawa-nct.ac.jp

Abstract Audio source separation is a technique for separating individual audio sources from an observed mixture signal. In particular, blind source separation (BSS) does not require any information about locations of audio sources and microphones. Because of its importance, BSS has been investigated for more than 20 years. In this talk, one of the new BSS algorithms called independent low-rank matrix analysis (ILRMA) is explained. Also, some recent extensions of ILRMA are introduced. **Key words** Blind source separation, independent component analysis, nonnegative matrix factorization, deep learning, spectrogram consistency

1. はじめに

ブラインド音源分離 (blind source separation: BSS) とは, 音源 位置や混合系が未知の条件で観測された信号のみから混合前の 音源信号を推定する音響信号処理技術である.優決定条件(音 源数 < 観測チャネル数) における BSS では、1994 年に提案され た独立成分分析 (independent component analysis: ICA) [1] に基 づく手法が歴史的に主流である. ICA は、音源間の統計的独立 性と音源信号の非ガウスな生成モデルを仮定することで、混合 行列の逆系である分離行列を推定する理論である.一般的な音 響信号の混合系は畳み込み混合となるが、この場合は観測信号 に短時間 Fourier 変換 (short-time Fourier transform: STFT) を適 用することで周波数毎の瞬時混合に変換できる. これを用いて, 複素スペクトログラムの各周波数ビンに対して ICA を適用し周 波数毎の分離行列を推定する周波数領域 ICA (frequency-domain ICA: FDICA) [2] が 1998 年に提案された. しかしながら, ICA は分離信号の順序に任意性があるため、Fig.1に示すように、 FDICA では周波数ビン毎に推定される分離信号の順番が不揃い となるパーミュテーション問題が生じる.

FDICA で推定される分離信号の順序を全周波数にわたって適 切に並び替えるパーミュテーション解決には、これまでに様々 な手法が提案されている[3]~[7]. 近年では, 深層ニューラル ネットワーク (deep neural network: DNN) に基づくパーミュ テーション解決法も検討されている [8]. 歴史的には, FDICA に基づく周波数毎の BSS の後にパーミュテーション解決法を適 用する手法から、パーミュテーション問題を回避しつつ周波数 毎の BSS を行う統一的な手法へと発展する.まず,2006 年に独 立ベクトル分析 (independent vector analysis: IVA) [9]~[11] が 提案された. IVA 各音源の周波数成分を一つにまとめた周波数 ベクトルの生成モデル(多変量確率分布)を仮定し, Fig. 2(a) に 示すように「同一音源の周波数成分間は共起性(高次相関[11]) を持つ」ことを仮定することで、パーミュテーション問題を可 能な限り回避しながら周波数毎の分離行列を推定する. 2010年 と 2011 年には、補助関数法 [12] に基づく高速・安定な ICA [13] 及び IVA (auxiliary-function-based IVA: AuxIVA) [14] が提案さ れ、IVA は非常に実用的な BSS アルゴリズムとなった.

音声信号の BSS では IVA が効果的である反面,例えば複数の楽器音信号が混合した音楽信号の BSS では, IVA はしばし

Copyright ©2021 by IEICE

Fig. 1 Permutation problem in frequency-domain BSS based on FDICA.

Fig. 2 Structure of source models in (a) IVA and (b) ILRMA, where grayscale depicts intensity of variance.

ば分離に失敗してしまう. これは, IVA が仮定する同一音源の 周波数成分間の共起性(このような一つの音源に対する時間周 波数領域での仮定を以後「音源モデル」と呼ぶ)が音楽信号に 対しては不適切であることが原因として挙げられる.即ち,音 楽信号では複数の異なる楽器音が同一周波数においても共起す る調和成分を多分に含んでいるため、複数音源間で共起性が生 じ、別の音源の成分を誤って同一音源とみなしてしまう現象が 生じる.そこで、IVA の仮定する音源モデルを拡張し、多様な 音源に適合できる柔軟なモデルに改良した BSS として, 2016年 に独立低ランク行列分析(independent low-rank matrix analysis: ILRMA) [15]~[18] が提案された^(注1). ILRMA では, Fig. 2 (b) に示すように「同一音源の時間周波数パワー構造は非負低ラン ク行列で表現できる」ことを仮定している.これは、1本の基 底ベクトルから成る IVA の音源モデルを, 高々数本の基底ベ クトルから成る音源モデルに一般化したものと解釈できる.ま た, ILRMA の音源モデルにおける基底ベクトル (Fig. 2 (b) の 例では3本)及びその係数ベクトルは,非負値行列因子分解 (nonnegative matrix factorization: NMF) [19], [20] の推定理論が 用いられており, ICA とは独立に研究されてきた NMF に基づ く劣決定条件(音源数 > 観測チャネル数)の音源分離技術(例 えば[21]~[26] 等)との繋がりも新たに生まれた. これらの歴 史的俯瞰については、文献[27]に詳しいので参照されたい.

本稿では、2016年に登場した BSS アルゴリズムである IL-RMA に焦点を当て、原理の簡単な説明を述べる.また、その後 の研究成果として、ILRMA を起源とした発展手法である DNN に基づく教師有り音源モデル拡張及びスペクトログラム無矛盾 性を担保する制約付き ILRMA の二つを新たに紹介する.いず れも、Fig. 1 に示すパーミュテーション問題を高精度に回避し

(注1): ILRMA は文献[15],[16] で rank-1 MNMF と呼ばれているが,後の文献で改名された.

ながら BSS を達成するための発展であり,そのためにより良い 音源モデルの探求した手法である.

2. ILRMA に基づく BSS の原理

2.1 BSS で解くべき問題の定式化

音源数と観測チャネル数をそれぞれ N 及び M とし,各時間 周波数における音源信号,観測信号,及び分離信号をそれぞれ

$$\mathbf{s}_{ii} = [s_{ii1}, s_{ii2}, \cdots, s_{iin}, \cdots, s_{iiN}]^{\mathrm{T}} \in \mathbb{C}^{N}$$
(1)

$$\boldsymbol{x}_{ij} = [x_{ij1}, x_{ij2}, \cdots, x_{ijm}, \cdots, x_{ijM}]^{\mathrm{T}} \in \mathbb{C}^{M}$$
(2)

$$\boldsymbol{y}_{ij} = [y_{ij1}, y_{ij2}, \cdots, y_{ijn}, \cdots, y_{ijN}]^{\mathrm{T}} \in \mathbb{C}^{N}$$
(3)

と表す. ここで, i = 1, 2, ..., I, j = 1, 2, ..., J, n = 1, 2, ..., N, 及びm = 1, 2, ..., M はそれぞれ周波数ビン,時間フレーム, 音源,及び観測チャネルのインデクスを示し, ^{.T} は転置を表 す.また,各信号の複素スペクトログラム行列を $S_n \in \mathbb{C}^{I \times J}$, $X_m \in \mathbb{C}^{I \times J}$,及び $Y_n \in \mathbb{C}^{I \times J}$ で表す.これらの行列の要素はそ れぞれ s_{ijn}, x_{ijm} ,及び y_{ijn} に一致する.混合系が線形時不変で あり,時間周波数領域での複素瞬時混合で表現できる場合,周波数 毎の時不変な複素瞬時混合行列 $A_i = [a_{i1} a_{i2} \cdots a_{iN}] \in \mathbb{C}^{M \times N}$ $(a_{in} = [a_{in1}, a_{in2}, \cdots, a_{inM}]^T$ は各音源のステアリングベクト ル)が定義でき,観測信号を次式で表現できる.

$$\boldsymbol{x}_{ij} = \boldsymbol{A}_i \boldsymbol{s}_{ij} \tag{4}$$

この混合モデルは、時不変混合系の残響時間が STFT の窓長よ りも十分短い場合に成立する.このとき、M = Nかつ A_i が正 則であれば、分離ベクトル $w_{in} = [w_{in1}, w_{in2}, \cdots, w_{inM}]^{T}$ で構 成される分離行列 $A_i^{-1} \approx W_i = [w_{i1} w_{i2} \cdots w_{iN}]^{H} \in \mathbb{C}^{N \times M}$ が 存在し、分離信号は次式で与えられる.

$$\boldsymbol{y}_{ij} = \boldsymbol{W}_i \boldsymbol{x}_{ij} \tag{5}$$

ここで、・^H はエルミート転置を示す. 優決定条件 BSS では、式 (5) 中の分離行列 W_i を全周波数 $i = 1, 2, \cdots, I$ において推定す ることが最終的な目標となる.本稿では、以後常に決定的な系 (M=N) を考える.

2.2 動 機

前章で述べたように, IVA はパーミュテーション問題を回避 する為に, Fig. 2 (a) に示すように,同一音源の周波数成分間 が一様な強度の共起性を持つことを音源モデルとして仮定して いる.しかしながら,実際の音響信号では,基本周波数とその 倍音は強い共起性を持つが,それ以外の成分や周波数差の大き い成分間の共起性は弱くなる等,共起性の度合いは時間周波数 のグリッド (*i*, *j*) に依存して大きく変動する.このような理由 から, IVA は特に楽器音信号等のように明確な時間周波数構造 を持つ音響信号の分離には適していない.各音源の時間周波数 領域での共変性をより詳細にモデル化できれば,高精度なパー ミュテーション問題の回避や高精度な分離行列の推定につなが ると考えられる.

時間周波数領域での共変性は、板倉斎藤擬距離に基づく NMF (Itakura–Saito NMF: ISNMF) [28] として提案された統計的生成 モデルによって効率的かつ詳細に表現可能である.この生成モ デルは局所 Gauss モデル (local Gauss model: LGM) と呼ばれ, 文献 [29], [30] に詳しい. ILRMA では, この LGM 及び ISNMF に基づく音源モデルを IVA に導入し, 高精度な BSS を達成し ている. 次節にてその詳細を述べる.

2.3 ILRMA で仮定する音源の生成モデル

ILRMA では、音源の複素スペクトログラムに対して次のよう な統計的仮定をおく、今、複素スペクトログラム S_n の各時間周 波数要素 s_{ijn} が L 個の複素要素 $c_{ij1n}, c_{ij2n}, \cdots, c_{ijLn}$ の合成 $s_{ijn} = \sum_l c_{ijln}$ で与えられると考える、ここで、 $l = 1, 2, \cdots, L$ は複素要素のインデクスである、さらに、複素要素 c_{ijln} の生 成モデルを、次式に示す原点対称な複素ガウス分布と仮定する.

$$p(c_{ijln};\rho_{ijln}) = \frac{1}{\pi\rho_{ijln}} \exp\left(-\frac{|c_{ijln}|^2}{\rho_{ijln}}\right)$$
(6)

ここで、 $\rho_{ijln} > 0$ は分散である.式(6)は原点対称であるため、 確率値は複素要素 c_{ijln} の位相によらず振幅 $|c_{ijln}|$ あるいはパ ワー $|c_{ijln}|^2$ にのみ依存する.従って、分散はパワーの期待値 $\rho_{ijln} = E[|c_{ijln}|^2]$ に対応する.合成成分 s_{ijn} の生成モデルは 次式となる.

$$p(s_{ijn};r_{ijn}) = \frac{1}{\pi r_{ijn}} \exp\left(-\frac{|s_{ijn}|^2}{r_{ijn}}\right)$$
(7)

ここで、 $r_{ijn} > 0$ は分散であり、複素 Gauss 分布の再生性より $r_{ijn} = \sum_{l} \rho_{ijln}$ が成立する.即ち $p(s_{ijn})$ は、個々の複素要素 c_{ijln} の分散 ρ_{ijln} の合成 $\sum_{l} \rho_{ijln}$ を新たな分散とした原点対称 な複素ガウス分布となる.

式 (7) が時間周波数の各グリッド (*i*, *j*) で互いに独立と仮定 すると, 複素スペクトログラム *S*_n の生成モデルは次式となる.

$$p(\boldsymbol{S}_n; \boldsymbol{R}_n) = \prod_{i,j} \frac{1}{\pi r_{ijn}} \exp\left(-\frac{|s_{ijn}|^2}{r_{ijn}}\right)$$
(8)

ここで, $R_n \in \mathbb{R}_{>0}^{I \times J}$ は分散 r_{ijn} を要素に持つ分散行列であり, R_n のランクは高々 L である. 複素スペクトログラムに対する 生成モデル (8) は LGM と呼ばれる. 複素要素 c_{ijln} の分散を $\rho_{ijln} = t_{iln}v_{ljn}$ とおけば, 合成成分 s_{ijn} の分散 r_{ijn} は

$$r_{ijn} = \sum_{l} t_{iln} v_{ljn} \tag{9}$$

と表現でき、 S_n のパワースペクトログラム $|S_n|^{-2}$ を ISNMF で 低ランク近似することが、LGM を仮定した分散の最尤推定と 等価になる [28]~[30]. 但し、行列に対する絶対値 |·| 及びドッ ト付き指数 ·· P はそれぞれ要素毎の絶対値及び要素毎の p 乗を 施した行列を表す.また、 $t_{iln} \ge 0$ 及び $v_{ljn} \ge 0$ は非負変数で あり、行列表記 $T_n \in \mathbb{R}_{\ge 0}^{I \times L}$ 及び $V_n \in \mathbb{R}_{\ge 0}^{L \times J}$ を導入すれば、式 (9) は次式の行列積で表される.

$$\boldsymbol{R}_n = \boldsymbol{T}_n \boldsymbol{V}_n \tag{10}$$

2.4 音源間の独立性の導入と目的関数

理想的には,式 (5) で得られる分離信号 Y_n は音源信号 S_n と一致することから, $p(Y_n) = p(S_n)$ と考えたうえで,分離行 列 W_i の最尤推定問題を考える.音源間の独立性の仮定より, $p(y_{ij}) = p(y_{ij1}, y_{ij,2}, \dots, y_{ijN}) = \prod_n p(y_{ijn})$ を用いると,観 測信号の尤度関数は次式となる[18].

$$\mathcal{L} = \prod_{i,j} p(\mathbf{x}_{ij} | \mathbf{W}_i)$$
$$= \prod_{i,j} \left[|\det \mathbf{W}_i|^2 \cdot p(\mathbf{y}_{ij}) \right]$$
$$= \prod_{i,j} \left[|\det \mathbf{W}_i|^2 \cdot \prod_n p(y_{ijn}) \right]$$
(11)

従って、負対数尤度関数は $p(y_{ijn}) = p(s_{ijn})$ より次式となる.

$$-\log \mathcal{L} = -\sum_{i,j} \log |\det \mathbf{W}_i|^2 - \sum_{i,j,n} \log p(y_{ijn})$$
$$= -2J \sum_i \log |\det \mathbf{W}_i| + \sum_{i,j,n} \left[\frac{|y_{ijn}|^2}{r_{ijn}} + \log r_{ijn} \right] + \text{const.}$$

分散 r_{ijn} を式 (9) とおけば,分散行列 R_n (即ち分離信号 Y_n の パワースペクトログラムの期待値)に式 (10) なる非負低ランク 制約を NMF 音源モデルとして与えることができ,結果として ILRMA の目的関数が次式として得られる.

$$\mathcal{J} = -2J \sum_{i} \log |\det W_i| + \sum_{i,j,n} \left[\frac{|y_{ijn}|^2}{\sum_l t_{iln} v_{ljn}} + \log \sum_l t_{iln} v_{ljn} \right]$$
(12)

上式を分離行列 $\{W_i\}_{i=1}^I$ と NMF の変数行列 (基底行列 $\{T_n\}_{n=1}^N$ 及びアクティベーション行列 $\{V_n\}_{n=1}^N$) に関して最小化するこ とで、各分離信号の時間周波数の共変性の強度(分散 Rn)を低 ランクに制約しながら、分離行列を最尤推定できる.最適化の 過程で、混合されている各音源の時間周波数構造(パワースペ クトログラム)を $R_n = T_n V_n$ として緻密にモデル化することに 成功すれば、パーミュテーション問題も高精度に回避できる. このような ILRMA の音源分離の原理を Fig. 3 に示す. Wi 及 び NMF 音源モデル最適化の過程では、分離信号のパワースペ クトログラム $|Y_n|^{2}$ を低ランク行列としてモデル化しながら、 その時間周波数構造を共変性として加味した分離行列 Wi を推 定する. 混合前の各音源のパワースペクトログラム |S_n|^{.2} が低 ランクであれば、混合信号のパワースペクトログラム |Xml⁻² のランクはいずれの m においても基本的に増加することから, ILRMA は分離信号の時間周波数構造を低ランクに誘導するこ とで、パーミュテーション問題を避けつつ. 互いに独立となる 分離信号を推定していると解釈できる.

2.5 反復最適化更新式

式 (12) を最小化する W_i , T_n , 及び V_n は, AuxIVA で提案された反復射影法(iterative projection: IP)[14] 及び ISNMF の更新式を交互に反復計算することで最適化できる. ILRMA の最適化アルゴリズムを Algorithm 1 に示す. 但し, $e_n \in \{0,1\}^N$ は n 番目の要素のみが 1 で他の要素が 0 のベクトルである. また,行列間の演算子 \odot 及び分数はそれぞれ要素毎の積及び商, $[\cdot]_{r,c}$ は行列の (r,c) 番目の要素を表す. これらの反復更新式は, 1 回の更新で目的関数 \mathcal{J} の値が増加しないことが理論的に保証されている. 反復最適化の後は,分離行列の周波数毎のスケール 任意性を解消するために,プロジェクションバック(projection back: PB)法[31] を適用して分離信号を再計算し,その後 Y_n に逆 STFT を適用して時間領域の分離信号を得る. ILRMA の具

Fig. 4 Principle of source separation based on IDLMA, where N = 2 and τ is index of discrete time.

Algorithm 1 ILRMA
Input: $\{x_{ij}\}_{i=1,j=1}^{I,J}$, maxiter
Output: $\{y_{ij}\}_{i=1,j=1}^{I,J}$
1: Initialize $\{T_n\}_{n=1}^N, \{V_n\}_{n=1}^N, \{W_i\}_{i=1}^I$
2: for iter = $1, 2, \cdots$, maxIter do
3: $T_n \leftarrow T_n \odot \left\{ \frac{\left[Y_n ^{\cdot 2} \odot (T_n V_n)^{\cdot -2} \right] V_n^{\mathrm{T}}}{(T_n V_n)^{\cdot -1} V_n^{\mathrm{T}}} \right\}^{\cdot \frac{1}{2}} \forall n$
4: $V_n \leftarrow V_n \odot \left\{ \frac{T_n^{\mathrm{T}} [Y_n ^{\cdot 2} \odot (T_n V_n)^{\cdot -2}]}{T_n^{\mathrm{T}} (T_n V_n)^{\cdot -1}} \right\}^{\cdot \frac{1}{2}} \forall n$
5: $\boldsymbol{U}_{in} \leftarrow \frac{1}{J} \sum_{j} \frac{1}{[\boldsymbol{T}_n \boldsymbol{V}_n]_{i,j}} \boldsymbol{x}_{ij} \boldsymbol{x}_{ij}^{\mathrm{H}} \forall i, n$
6: $\boldsymbol{w}_{in} \leftarrow (\boldsymbol{W}_i \boldsymbol{U}_{in})^{-1} \boldsymbol{e}_n \ \forall i, n$
7: $\boldsymbol{w}_{in} \leftarrow \boldsymbol{w}_{in} \left(\boldsymbol{w}_{in}^{\mathrm{H}} \boldsymbol{U}_{in} \boldsymbol{w}_{in} \right)^{-\frac{1}{2}} \forall i, n$
8: end for

体的な実装は MATLAB^(注2)と Python^(注3)がそれぞれ公開されて いる.また,ILRMA による BSS のデモンストレーション^(注4)も 公開されているため、参照されたい.

3. DNN 音源モデルと ILRMA の融合

3.1 教師有り音源モデル導入の意図

ILRMA の BSS 実験[16] で示されるように,混合前の各音源 の時間周波数間の共変性に関する仮定(音源モデル)が適切で あれば,パーミュテーション問題をほとんど起こすことなく分 離行列を推定でき,高精度な音源分離が達成される.確かに, 音楽信号中の各楽器音は NMF に基づく低ランク音源モデルが 良く適合し,ILRMA は高い性能を発揮する.しかしながら, 時間的にスペクトルが大きく変動する音声信号やボーカル信号 等は低ランク音源モデルはあまり適切ではない.不適切な音源 モデルを仮定した場合には,やはりパーミュテーション問題が 発生し,分離性能が劣化する.音源の性質を陽に仮定せずとも 適切な音源モデル R_n を推定できれば理想的であるが,それは BSS の枠組みでは非常に困難である.

分離対象音源の十分な学習データが用意できる場合は,その 音源に対して適切な音源モデルを構築することは比較的容易 である.特に,教師有り学習において大きな成果を上げている DNN に基づく手法は,音源分離問題に対してもその有効性が 多くの文献で示されている(例えば[32]~[36]等).一方,空間 的な伝達系は,音源位置やマイクロホン位置,部屋の形状,残 響時間等膨大な物理要因に依存することから,それらを網羅す る学習データを用意することは非現実的である.従って,音源 モデルには学習済の DNN を用い,分離行列は従来通りブライ ンドに推定する手法が合理的である.

上記の理由より, 音源間の統計的独立性に基づくブラインドな 分離行列推定と DNN に基づく教師有り音源モデルを組み合わ せた手法として, 2018 年に独立深層学習行列分析 (independent deeply learned matrix analysis: IDLMA) [37]~[39] が提案され た. IDLMA は, ILRMA と同じような分離行列推定の過程で, DNN 音源モデルで推定される時間周波数分散行列 R_n を活用 する BSS であり, ILRMA における教師無し NMF 音源モデル が教師有り DNN 音源モデルへと入れ替えられたものである.

3.2 IDLMA の処理の概要

Fig. 4 に IDLMA による音源分離の原理図を示す. IDLMA は ILRMA と同様に,式(8)の生成モデルに基づいて音源モデル R_n 及び分離行列 W_i を推定する.このとき,混合信号から n 番 目の音源の分散行列 R_n を推定する DNN を事前に学習してお き,これを DNN $_n$ とする.例えば,ボーカル信号とその他の雑 多な音源が混合した信号を入力とし,ボーカル信号のみの分散 行列を出力するように DNN を学習することで,ボーカル信号 を強調する DNN 音源モデルが得られる.このような特定の音 源を強調する DNN を全音源 (DNN₁, DNN₂,..., DNN_N) に対 して学習することで,低ランク性やスパース性等の陽なモデル ではなく学習データから得た適切な音源モデルを構築でき,よ り高精度な分散行列 R_n 及び分離行列 W_i の推定に活用できる.

IDLMA の処理の流れを Fig. 5 に示す. 分離行列 W_i は観測 信号 X_m と推定分散行列 R_n を用いて IP によって更新され,暫 定的な分離信号 Y_n が得られる. 空間モデルの推定には周波数

⁽注2):https://github.com/d-kitamura/ILRMA/blob/master/ILRMA.m

⁽注3):https://pyroomacoustics.readthedocs.io/en/pypi-release/pyroomacoustics.bss.ilrma.html

⁽注4):http://d-kitamura.net/demo-ILRMA.html

Fig. 5 Process flow of IDLMA in two sources case, where first channel is used as reference for PB.

毎のスケールの任意性があるため, Y_n に対してリファレンス チャネルを用いた PB 法を適用し,スケール補正後の分離信号 $\hat{Y}_n \in \mathbb{C}^{I \times J}$ を得る.反復最適化の初期は分離が不十分であるた め, \hat{Y}_n は他の音源成分が多く残留している.これを混合信号 とみなし,音源モデル DNNn に入力することで,より分離が 進んだ推定分散行列 R_n が得られ,これを再び分離行列 W_i の 更新に用いる.このプロセスを繰り返すことで,より高精度な W_i が推定される.IDLMA の最終的な出力は \hat{Y}_n であり,これ は時不変線形空間フィルタ $w_{i,n}$ の出力であるため,IDLMA は ILRMA と同様に歪みの少ない分離信号が得られる.これは、例 えば分離信号をさらに音声認識に適用する場合などにおいて大 きな利点となる.

より具体的な処理内容や実験による性能評価については, 文献 [37]~[39] を参照されたい.また,ILRMA による BSS と IDLMA による教師有り音源分離を比較したデモンストレーショ ン^(注5)も公開されている.さらに近年では,IDLMA においてよ り安定かつ高速な分離行列の更新を行う手法 [40],周波数ビン間 相関をモデル化する独立深層学習テンソル分析 [41],経験 Bayes を用いて DNN 音源モデルの信頼度を考慮する IDLMA [42] 等 が提案されている.

4. スペクトログラム無矛盾性制約付き ILRMA

4.1 スペクトログラム無矛盾性とパーミュテーション問題

時間波形に STFT を施して得られるスペクトログラムは, STFT 中の窓関数とそのオーバーラップの影響を受け,近傍時 間周波数グリッドに一貫した共起性を持つ.このような状態を スペクトログラム無矛盾 [43],[44] と呼ぶ.スペクトログラムに 対して BSS 等の時間周波数領域での信号処理を施した場合,こ の一貫した共起性は通常崩され,矛盾したスペクトログラムと なる.矛盾スペクトログラムに逆 STFT を施した場合,無矛盾

Algorithm 2 Consistent ILRMA
Input:
$$\{x_{ij}\}_{i=1,j=1}^{I,J}$$
, maxIter
Output: $\{y_{ij}\}_{i=1,j=1}^{I,J}$
1: Initialize $\{T_n\}_{n=1}^N, \{V_n\}_{n=1}^N, \{W_i\}_{i=1}^I$
2: for iter = 1, 2, · · · , maxIter do
3: $Y_n \leftarrow \text{STFT}_{\omega}(\text{ISTFT}_{\widetilde{\omega}}(Y_n)) \forall n$
4: $T_n \leftarrow T_n \odot \left\{ \frac{\left[|Y_n|^{-2} \odot (T_n V_n)^{-2}\right] V_n^{\text{T}}}{(T_n V_n)^{-1} V_n^{\text{T}}} \right\}^{\frac{1}{2}} \forall n$
5: $V_n \leftarrow V_n \odot \left\{ \frac{T_n^{\text{T}}[|Y_n|^{-2} \odot (T_n V_n)^{-2}]}{T_n^{\text{T}}(T_n V_n)^{-1}} \right\}^{\frac{1}{2}} \forall n$
6: $U_{in} \leftarrow \frac{1}{J} \sum_j \frac{1}{|T_n V_n|_{i,j}} x_{ij} x_{ij}^{\text{H}} \forall i, n$
7: $w_{in} \leftarrow (W_i U_{in})^{-1} e_n \forall i, n$
8: $w_{in} \leftarrow w_{in} \left(w_{in}^{\text{H}} U_{in} w_{in} \right)^{-\frac{1}{2}} \forall i, n$
9: $\lambda_{in} \leftarrow [W_i^{-1}]_{m_{\text{ref}},n} \forall i, n$
10: $w_{in} \leftarrow \lambda_{in} w_{in} \forall i, n$
11: $y_{ijn} \leftarrow w_{in}^{\text{H}} x_{ij} \forall i, j, n$
12: $[T_n]_{i,k} \leftarrow |\lambda_{in}|^2 [T_n]_{i,k} \forall i, k, n$
13: end for

なスペクトログラムへの射影と時間領域への変換が起こる. こ の例を Fig. 6 に示す. 図の左列は人工的に作成した矛盾スペク トログラム $S_{art} \in \mathbb{C}^{I \times J}$ のパワーであり,右列は S_{art} を逆 STFT し STFT した無矛盾なスペクトログラムのパワーである. 矛盾 スペクトログラムには無かった近傍時間周波数の共起成分が, 逆 STFT 及び STFT によって復元されていることが分かる.

2020年に、スペクトログラムの無矛盾性を最適化の過程で 担保することでパーミュテーション問題を緩和するBSS [45] が 提案された.また、同様の制約をILRMA に導入したスペクト ログラム無矛盾 ILRMA (consistent ILRMA) [46], [47] が新たに 提案された. Fig. 1 に示すように、パーミュテーション問題が 生じた分離信号のスペクトログラムは隣接周波数成分が不連続 となるため、無矛盾性が大きく損なわれる [45], [47]. Consistent ILRMA では、NMF 音源モデルに加えて、分離信号 Y_n のスペ クトログラム無矛盾性を最適化の過程で常に担保する.即ち、 最適化の毎反復において、分離信号 Y_n を STFT $_{\omega}$ (ISTFT $_{\overline{\omega}}(Y_n)$) に更新する.ここで、 $\omega と \tilde{\omega}$ はそれぞれ完全再構成条件を満 たす解析窓及び合成窓である.この結果、周波数毎の音源成分 が隣接周波数間で正しく整列された状態に誘導され、パーミュ テーション問題を回避する能力が向上する.

4.2 Consistent ILRMA のアルゴリズム

Consistent ILRMA の最適化アルゴリズムを Algorithm 2 に示 す. ここで、 m_{ref} は PB 法のためのリファレンスチャネルイン デクスを表す. Algorithm 1 と比較して、Algorithm 2 中の 3 行 目 (Y_n の無矛盾性を担保する更新)及び 9–12 行目 (m_{ref} チャ ネルへの PB 法の適用)が新たに挿入されている.本手法につ いても、詳細は文献 [47] を参照されたい.また、MATLAB に よる具体的な実装が公開されている^(住6).

⁽注5):http://d-kitamura.net/demo-IDLMA.html

⁽注6):https://github.com/d-kitamura/ILRMA/blob/master/consistentILRMA.m

ま と 5. め

本稿では、ILRMA に基づく BSS の原理について説明し、そ の後の発展手法である IDLMA 及び consistent ILRMA の二手法 を紹介した. これら以外にも、ILRMA を起源とした拡張は多く 提案されている. 例えば、理論的な拡張においては、音源の生 成モデルである LGM を優 Gauss 分布に拡張した ILRMA [48], 劣 Gauss 分布に拡張した ILRMA [49],及び複素 Poisson 分布を 用いた ILRMA [50], IVA や ILRMA の最適化に主双対近接分離 法を適用したアルゴリズム [51],周波数ビン間を無相関化した 領域での ILRMA [52], 音源モデルの概念をさらに一般化した 時間周波数マスク BSS [53] とその応用である調波ベクトル分 析 [54] 及び調波・打撃音 BSS [55], 分離行列の IP に基づく最 適化を高速化した ILRMA [56] 等が挙げられる.また、応用的 な拡張においては、災害救助ロボットにおける音声強調[57]、 拡散性雑音下での音声強調の前段処理[58],工業機器の異常音 検知の前段処理[59]、ユーザからの補助情報を用いるインタラ クティブ ILRMA [60] 等が挙げられる.

謝辞 JSPS 19K20306 及び 19H01116 の助成を受けた.

献 文

- P. Comon, "Independent component analysis, a new concept?," Signal processing, vol.36, [1] no.3, pp.287-314, 1994.
- [2] P. Smaragdis, "Blind separation of convolved mixtures in the frequency domain," Neurocomputing, vol.22, pp.21-34, 1998. S. Kurita, H. Saruwatari, S. Kajita K. Takeda, and F. Itakura, "Evaluation of blind signal
- [3] separation method using directivity pattern under reverberant conditions," Proc. ICASSP, vol.5, pp.3140-3143, 2000.
- N. Murata, S. Ikeda, and A. Ziehe, "An approach to blind source separation based on temporal [4] structure of speech signals," *Neurocomputing*, vol.41, no.1–4, pp.1–24, 2001. H. Sawada, R. Mukai, S. Araki, and S. Makino, "A robust and precise method for solving
- [5] the permutation problem of frequency-domain blind source separation," IEEE Trans. ASLP, vol.12, no.5, pp.530-538, 2004.
- H. Sawada, R. Mukai, S. Araki, and S. Makino, "Convolutive blind source separation for more than two sources in the frequency domain," *Proc. ICASSP*, pp.III-885–III-888, 2004.
 H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, and K. Shikano, "Blind source separa-[6] [7]
- tion based on a fast-convergence algorithm combining ICA and beamforming," IEEE Trans. ASLP, vol.14, no.2, pp.666-678, 2006.
- S. Yamaji and D. Kitamura, "DNN-based permutation solver for frequency-domain inde-[8] pendent component analysis in two-source mixture case," Proc. APSIPA ASC, pp. 781-787, 2020
- [9] A. Hiroe, "Solution of permutation problem in frequency domain ICA using multivariate [10]
- Tribit, Jordan of permanents protein in request y domain terms using maturative probability density functions," *Proc. ICA*, pp.601–608, 2006.
 T. Kim, T. Eltoft, and T.-W. Lee, "Independent vector analysis: an extension of ICA to multivariate components," *Proc. ICA*, pp. 165–172, 2006.
- T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, "Blind source separation exploiting higher-order frequency dependencies," *IEEE Trans. ASLP*, vol.15, no.1, pp.70–79, 2007. [11]
- D. R. Hunter and K. Lange, "A tutorial on MM algorithms." The American Statistician, [12] vol. 58, no. 1, pp. 30–37, 2004. N. Ono and S. Miyabe, "Auxiliary-function-based independent component analysis for super-[13]
- Gaussian sources," *Proc. LVA/ICA*, pp.165–172, 2010. N. Ono, "Stable and fast update rules for independent vector analysis based on auxiliary [14]
- function technique," Proc. WASPAA, pp.189–192, 2011. D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, "Efficient multichannel
- [15] nonnegative matrix factorization exploiting rank-1 spatial model," Proc. ICASSP, pp.276-280. 2015.
- D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, "Determined blind [16] source separation unifying independent vector analysis and nonnegative matrix factoriza-tion," *IEEE/ACM Trans. ASLP*, vol. 24, no. 9, pp. 1626–1641, 2016. 北村大地,小野順貴,澤田宏, 亀岡弘和, 猿渡洋, "独立低ランク行列分析に基づくプラ
- [17] ンド音源分離,"電子情報通信学会技術研究報告, EA2017-56, vol. 117, no. 255, pp. 73-80 2017
- [18] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, "Determined blind source separation with independent low-rank matrix analysis," Audio Source Separation. Signals and Communication Technology., S. Makino, Ed. Springer, Cham, pp. 125–155, 2018.
- and Communication Technology, 6: Instanto, Ed. Opinger, edual, pp. 12–135, 2010.
 D. D. ce and H. S. Seung, "Learning the parts of objects by non-negative matrix factoriza-tion," *Nature*, vol. 401, no. 6755, pp. 788–791, 1999. [19]
- D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization" Proc. NIPS, [20] p. 556-562, 2000.
- H. Kameoka, T. Yoshioka, M. Hamamura, J. Le Roux, and K. Kashino, "Statistical model [21] of speech signals based on composite autoregressive system with application to blind source separation," *Proc. LVA/ICA*, pp. 245–253, 2010.
- A. Ozerov and C. Févotte, "Multichannel nonnegative matrix factorization in convolutive [22] mixtures for audio source separation," IEEE Trans. ASLP, vol. 18, no. 3, pp. 550-563, 2010. [23] H. Kameoka, M. Nakano, K. Ochiai, Y. Imoto, K. Kashino, and S. Sagayama, "Constrained
- and regularized variants of non-negative matrix factorization incorporating music-specific onstraints," Proc. ICASSP, pp.5365-5368, 2012. H. Sawada, H. Kameoka, S. Araki, and N. Ueda, "Multichannel extensions of non-negative [24]
- matrix factorization with complex-valued data," IEEE Trans. ASLP, vol. 21, no. 5, pp. 971-982, 2013.
- D. Kitamura, H. Saruwatari, K. Yagi, K. Shikano, Y. Takahashi, and K. Kondo, "Music [25]

signal separation based on supervised nonnegative matrix factorization with orthogonality and maximum-divergence penalties," *IEICE Trans. Fundamentals*, vol. E97-A, no. 5, pp. 1113-1118, 2014

- D. Kitamura, H. Saruwatari, H. Kameoka, Y. Takahashi, K. Kondo, and S. Nakamura, [26] "Multichannel signal separation combining directional clustering and nonnegative matrix factorization with spectrogram restoration," *IEEE/ACM Trans. ASLP*, vol. 23, no. 4, pp. 654-669, 2015
- H. Sawada, N. Ono, H. Kameoka, D. Kitamura, and H. Saruwatari, "A review of blind source [27] separation methods: Two converging routes to ILRMA originating from ICA and NMF, APSIPA Trans. SIP, vol. 8, no. e12, pp. 1–14, 2019. C. Févotte, N. Bertin, and J.-L. Durrieu, "Nonnegative matrix factorization with the Itakura-
- [28] Saito divergence. With application to music analysis," Neural Computation, vol.21, no.3,
- pp.793-830, 2009. 北村大地, "複素生成モデルに基づく非負値行列因子分解と音源分離への応用," 日本音 [29]
- 響学会誌, vol. 75, no. 3, pp. 130–138, 2019. D. Kitamura, "Nonnegative matrix factorization based on complex generative model," Acous-[30] *tical Science and Technology*, vol. 40, no. 3, pp. 155–161, 2019. K. Matsuoka and S. Nakashima, "Minimal distortion principle for blind source separation,"
- Proc. ICA, pp. 722–727, 2001.
- [32] P.-S. Huang, M. Kim, M. H.-Johnson, and P. Smaragdis, "Joint optimization of masks and deep recurrent neural networks for monaural source separation," *IEEE/ACM Trans. ASLP*, vol. 23, no. 12, pp. 2136–2147, 2015.
- S. Uhlich, F. Giron, and Y. Mitsufuji, "Deep neural network based instrument from music," *Proc. ICASSP*, pp. 2135–2139, 2015.
- S. Araki, T. Hayashi, M. Delcroix, M. Fujimoto, K. Takeda, and T. Nakatani, "Exploring multi-channel features for denoising-autoencoder-based speech enhancement," Proc. ICASSP, pp. 116-120, 2015.
- [35] T. Nakatani, N. Ito, T. Higuchi, S. Araki, and K. Kinoshita, "Integrating DNN-based and spatial clustering-based mask estimation for robust MVDR beamforming," Proc. ICASSP, pp. 286-290, 2017.
- [36] A. A. Nugraha, A. Liutkus, and E. Vincent, "Multichannel audio source separation with deep neural networks," IEEE/ACM Trans. ASLP, vol. 24, no. 9, pp. 1652–1664, 2016. 北村大地, 角野隼斗, 高宗典玄, 高道慎之介, 猿渡洋, 猿渡洋, 小野順貴, "独立深層学習行
- [37] 列分析に基づく多チャネル音源分離の実験的評価,"電子情報通信学会技術研究報告, EA2017-104, vol. 117, no. 515, pp. 13-20, 2018.
- S. Mogami, H. Sumino, D. Kitamura, N. Takamune, S. Takamichi, H. Saruwatari, and [38] N. Ono, "Independent deeply learned matrix analysis for multichannel audio source separa-tion," Proc. EUSIPCO, pp. 1571–1575, 2018.
- N. Makishima, S. Mogami, N. Takamune, D. Kitamura, H. Sumino, S. Takamichi, H. Saruwatari, and N. Ono, "Independent deeply learned matrix analysis for determined [39] audio source separation," IEEE/ACM Trans. ASLP, vol. 27, no. 10, pp. 1601-1615, 2019.
- [40] N. Makishima, Y. Mitsui, N. Takamune, D. Kitamura, H. Saruwatari, Y. Takahashi, and K. Kondo, "Independent deeply learned matrix analysis with automatic selection of stable microphone-wise update and fast sourcewise update of demixing matrix," Signal Processing, vol. 178, 107753, 2021.
- N. Narisawa, R. Ikeshita, N. Takamune, D. Kitamura, T. Nakamura, H. Saruwatari, and [41] T. Nakatani, "Independent deeply learned tensor analysis for determined audio source separation," Proc. EUSIPCO, 2021 (in press).
- T. Hasumi, T. Nakamura, N. Takamune, H. Saruwatari, D. Kitamura, Y. Takahashi, and [42] K. Kondo, "Empirical Bayesian independent deeply learned matrix analysis for multichannel audio source separation," *Proc. EUSIPCO*, 2021 (in press). J. Le Roux, H. Kameoka, N. Ono, and S. Sagayama, "Fast signal reconstruction from mag-
- [43] [44]
- nitude STFT spectrogram based on spectrogram consistency," *Proc. DAFx*, 2010. J. Le Roux and E. Vincent, "Consistent Wiener filtering for audio source separation," *IEEE SPL*, vol. 20, no. 3, pp. 217–220, 2013. [45] K. Yatabe, "Consistent ICA: Determined BSS meets spectrogram consistency," IEEE SPL,
- vol. 27, pp. 870–874, 2020. 北村大地, 矢田部浩平, "スペクトログラム無矛盾性を用いた独立低ランク行列分析の [46]
- 実験的評価,"日本音響学会 2021 年春季研究発表会講演論文集, pp. 121-124, 2021 [47]
- D. Kitamura and K. Yatabe, "Consistent independent low-rank matrix analysis for determined blind source separation," *EURASIP J. ASP*, vol. 2020, no. 46, 2020. [48]
- D. Kitamura, S. Mogami, Y. Mitsui, N. Takamune, H. Saruwatari, N. Ono, Y. Takahashi, and K. Kondo, "Generalized independent low-rank matrix analysis using heavy-tailed distributions for blind source separation," EURASIP J. ASP. vol. 2018, no. 28, 2018.
- S. Mogami, N. Takamune, D. Kitamura, H. Saruwatari, Y. Takahashi, K. Kondo, and N. Ono, [49] "Independent low-rank matrix analysis based on time-variant sub-Gaussian source model for determined blind source separation," *IEEE/ACM Trans. ASLP*, vol. 28, pp. 503–518, 2019.
- S. Mogami, Y. Mitsui, N. Takamune, D. Kitamura, H. Saruwatari, Y. Takahashi, K. Kondo, H. Nakajima, and H. Kameoka, "Independent low-rank matrix analysis based on generalized Kullback-Leibler divergence," IEICE Trans. Fundamentals, vol. E102-A, no. 2, pp. 458-463, 2019.
- K. Yatabe and D. Kitamura, "Determined blind source separation via proximal splitting [51] algorithm," *Proc. ICASSP*, pp. 776–780, 2018. R. Ikeshita, N. Ito, T. Nakatani, and H. Sawada, "Independent low-rank matrix analysis with
- [52] decorrelation learning," *Proc. WASPAA*, pp. 288–292, 2019. K. Yatabe and D. Kitamura, "Time-frequency-masking-based determined BSS with appli-
- [53] cation to sparse IVA," Proc. ICASSP, pp. 715-719, 2019.
- [54] K. Yatabe and D. Kitamura, "Determined BSS based on time-frequency masking and its application to harmonic vector analysis," IEEE/ACM Trans. ASLP, vol. 29, pp. 1609-1625, 2021.
- S. Oyabu, D. Kitamura, and K. Yatabe, "Linear multichannel blind source separation based [55] on time-frequency mask obtained by harmonic/percussive sound separation," Proc. ICASSP, pp. 201-205 2021.
- ¹ Nakashima, R. Scheibler, Y. Wakabayashi, and N. Ono, "Faster independent low-rank matrix analysis with pairwise updates of demixing vectors," *Proc. EUSIPCO*, pp. 301–305, [56] 2020.
- [57] Y. Bando, H. Saruwatari, N. Ono, S. Makino, K. Itoyama, D. Kitamura, M. Ishimura, M. Takakusaki, N. Mae, K. Yamaoka, Y. Matsui, Y. Ambe, M. Konyo, S. Tadokoro, K. Yoshii, and H. G. Okuno, "Low-latency and high-quality two-stage human-voice-enhancement sys-tem for a hose-shaped rescue robot," *J. Robotics and Mechatronics*, vol. 29, no. 1, pp.198-212.2017
- Y. Kubo, N. Takamune, D. Kitamura, and H. Saruwatari, "Blind speech extraction based on [58] rank-constrained spatial covariance matrix estimation with multivariate generalized Gaussian distribution," *IEEE/ACM Trans. ASLP*, vol. 28, pp. 1948–1963, 2020.
- A. Aiba, M. Yoshida, D. Kitamura, S. Takamichi, and H. Saruwatari, "Noise robust acous tic anomaly detection system with nonnegative matrix factorization based on generalized Gaussian distribution," IEICE Trans. Inf. & Syst., vol. E104-D, no. 3, pp. 441-449, 2021.
- [60] F. Oshima, M. Nakano, and D. Kitamura, "Interactive speech source separation based on independent low-rank matrix analysis," Acoustical Science and Technology, vol. 42, no. 4, pp. 222-225, 2021.