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LETTER
Independent Low-Rank Matrix Analysis Based on Generalized
Kullback–Leibler Divergence∗

Shinichi MOGAMI†a), Yoshiki MITSUI†, Norihiro TAKAMUNE†, Daichi KITAMURA††, Nonmembers,
Hiroshi SARUWATARI†b), Member, Yu TAKAHASHI†††, Nonmember, Kazunobu KONDO†††, Member,

Hiroaki NAKAJIMA†††, Nonmember, and Hirokazu KAMEOKA††††, Member

SUMMARY In this letter, we propose a new blind source separa-
tion method, independent low-rank matrix analysis based on generalized
Kullback–Leibler divergence. This method assumes a time-frequency-
varying complex Poisson distribution as the source generative model, which
yields convex optimization in the spectrogram estimation. The experimental
evaluation confirms the proposed method’s efficacy.
key words: blind source separation, nonnegative matrix factorization,
Poisson distribution, Kullback–Leibler divergence

1. Introduction

Blind source separation (BSS) [1]–[3] is a technique for ex-
tracting specific sources from an observedmultichannelmix-
ture signal without knowing a priori information about the
mixing system. Let N and M be the numbers of sources and
channels, respectively. The short-time Fourier transforms
(STFTs) of the multichannel source, observed, and estimated
signals are defined as si j = (si j1, . . . , si jN )> ∈ CN, xi j =
(xi j1, . . . , xi jM )> ∈ CM, and yi j = (yi j1, . . . , yi jN )> ∈ CN,
where i = 1, . . . , I; j = 1, . . . , J; n = 1, . . . , N ; and
m = 1 . . . , M are the integral indices of the frequency
bins, time frames, sources, and channels, respectively, and
> denotes the transpose. We assume the mixing system
xi j = Ai si j , where Ai = (ai1, . . . , aiN ) ∈ CM×N is a
frequency-wise mixing matrix and ain is the steering vector
for the nth source. When M = N and Ai is not a singular ma-
trix, the estimated signal yi j can be expressed as yi j = Wixi j ,
where Wi = A−1

i = (wi1, . . . , wiN )H is the demixing matrix,
win is the demixing filter for the nth source, and H denotes
the Hermitian transpose. Multichannel nonnegative matrix
factorization (MNMF) [4], [5] is a BSS method that simulta-
neously estimates both the low-rank time-frequency structure
and the spatial covariance matrix for each source, indirectly
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identifying the mixing system. Recently, independent low-
rank matrix analysis (ILRMA) [6], which is a unification of
direct estimation of the demixingmatrix [7] and simple non-
negative matrix factorization (NMF) [8], [9], was proposed
as a state-of-the-art BSS method. In terms of optimization,
ILRMA is faster and more stable than MNMF.

Conventional MNMF and ILRMA assume the time-
frequency-varying complexGaussian distribution in the gen-
erative model of each source spectrogram, which corre-
sponds to NMF based on Itakura–Saito (IS) divergence (IS-
NMF). We refer to the conventional ILRMA based on IS
divergence as IS-ILRMA. Recently, the source generative
models assumed in ILRMA and MNMF were generalized to
the time-frequency-varying complex Student’s t-distribution
(t-MNMF [10] and t-ILRMA [11]). These conventional
ILRMAs always include a non-convex optimization in the
spectrogram modeling that is sensitive to the initialization
and diversifies the separation quality. In this letter, we pro-
pose ILRMA based on generalized Kullback–Leibler (KL)
divergence (KL-ILRMA) by using a time-frequency-varying
complex Poisson distribution as the source generativemodel.
In KL-ILRMA, the estimation of a low-rank spectrogram
model results in KL-divergence-based NMF (KL-NMF) [8],
which is a convex optimization in terms of each decomposed
matrix variable. To our knowledge, the proposed method is
theworld’s first attempt to realize convex-optimization-based
ILRMA w.r.t. source modeling. Owing to this property, we
can perform separation robust against the initialization of the
source model.

2. Proposed Method

2.1 ILRMA Based on Time-Frequency-Varying Complex
Poisson Distribution

KL-ILRMA approximates the source spectrogram with a
nonnegative low-rank matrix by minimizing their general-
ized KL divergence. Here we assume that the source model
follows the time-frequency-varying complex Poisson distri-
bution [12], which is the extension of the real-valued Pois-
son distribution to complex values. The probability density
function of the complex Poisson distribution is defined as

p(z) =
|z |−1 λ |z |

2π(|z |)!
e−λ, (1)

where z is in the set D = {z ∈ C | |z | ∈ N} and λ is a shape
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parameter characterizing its distribution.
In KL-ILRMA, the following time-frequency-varying

complex Poisson source generative model is assumed:

∏
i, j,n

p(yi jn) =
∏
i, j,n

���yi jn
���
−1
λi jn |

yi jn |

2π ���yi jn
���!

e−λi jn, (2)

λi jn =
∑
k

tiknvk jn, (3)

where λi jn is the shape parameter as well as the mean of
the amplitude of the complex Poisson distribution and is
interpreted as the ith row and jth column value of the source
spectrogram model as in Eq. (3). The variables tikn and
vk jn are the elements of the basis matrix Tn ∈ R

I×K
≥0 and

the activation matrix Vn ∈ R
K×J
≥0 , respectively, where R≥0

denotes the set of nonnegative real numbers. k = 1, . . . , K
is the index of the bases, and the number of bases K is
usually much less than I and J. Note that the validity of this
generative model is discussed in Appendix.

Since yi jn = wH
inxi j in Eq. (2), the negative log-

likelihood of xi j = W−1
i yi j is given by

L =
∑
i, j,n

[
log(|wH

inxi j |!) + log|wH
inxi j |

− |wH
inxi j | log

∑
k

tiknvk jn +
∑
k

tiknvk jn

]

− 2J
∑
i

log |detWi | + const. (4)

To express the term log(|wH
inxi j |!) via elementary functions

and extend the domain of the definition to an analog domain,
we apply Stirling’s approximation (its practical validity will
be assessed in Sect. 3.1)

log(|wH
inxi j |!) ≈ |w

H
inxi j | log|wH

inxi j | − |w
H
inxi j |. (5)

Hence, we obtain the cost function to be minimized as

J =
∑
i, j,n

[
|wH

inxi j | log|wH
inxi j | − |w

H
inxi j | + log|wH

inxi j |

− |wH
inxi j | log

∑
k

tiknvk jn +
∑
k

tiknvk jn

]

− 2J
∑
i

log |detWi | + const. (6)

=
∑
i, j,n

[
DKL(|wH

inxi j | |
∑

k tiknvk jn) + log|wH
inxi j |

]
− 2J

∑
i

log |detWi | + const., (7)

where DKL(y | x) = y log y − y log x− y + x is the general-
ized KL divergence. Therefore, the minimization of the cost
function J simultaneously achieves high independence be-
tween the sources and the low-rank modeling of each source
spectrogram based on the generalized KL divergence.

2.2 Update Rule for Source Model

In the cost function Eq. (7), the only term related to Tn and
Vn is DKL(|wH

inxi j | |
∑

k tiknvk jn). Therefore,Tn andVn can
be optimized byminimizing the divergence via the KL-NMF
update rules [8]

tikn ← tikn
(∑

j

|wH
inxi j |vk jn∑
k′ tik′nvk′ jn

) (∑
j

vk jn

)−1
, (8)

vk jn ← vk jn

(∑
i

|wH
inxi j |tikn∑

k′ tik′nvk′ jn

) (∑
i

tikn
)−1

. (9)

Since minimization of the generalized KL divergence
is a convex problem w.r.t. either Tn or Vn [9], KL-ILRMA
is expected to more stably estimate the source spectrograms
than conventional ILRMAs, which do not involve convex
problems w.r.t. either Tn or Vn.

2.3 Update Rule for Demixing Matrix

In conventional IS-ILRMA, the demixing matrix Wi can be
updated by applying iterative projection (IP) [3], which is a
fast and stable optimization algorithm that can be applied to
the sum of |wH

inxi j |
2 and− log|detWi |. In KL-ILRMA, how-

ever, IP cannot be applied, i.e., the cost function Eq. (6) does
not satisfy the necessary condition for the use of IP. Instead,
we apply a majorization-minimization (MM) algorithm [13]
to derive the update rule of win. First, we apply the tangent
line inequality

log|wH
inxi j | ≤

1
αi jn

(|wH
inxi j | − αi jn) + log αi jn (10)

to the term log|wH
inxi j | in Eq. (6), where αi jn > 0 is an

auxiliary variable. Thus, the majorization function can be
designed as

J ≤ J1 =
∑
i, j,n

[
1
αi jn
|wH

inxi j |
2 + di jn |w

H
inxi j |

]

− 2J
∑
i

log |detWi | + const., (11)

di jn =
1
αi jn

+ log(αi jn/
∑

k tiknvk jn) − 2, (12)

where J and J1 become equal only when αi jn = |w
H
inxi j |.

Second, we design the further majorization function of
di jn |w

H
inxi j | to make it differentiable w.r.t. win. As shown in

Fig. 1, we can compose a majorization function of d | y | that
coincideswith d | y | at an arbitrary point y0 (black dotted line
in Fig. 1) by branching into “paraboloid type” (d ≥ 0) and
“plane type” (d < 0) cases. Thus, the majorization functions
of di jn |w

H
inxi j | are obtained as
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Fig. 1 Shapes of majorization function (blue) of original function d |y |
(green) with contact point y0 (black dotted line). When d > 0, d |y | can
be majorized by paraboloid of revolution (left). When d < 0, d |y | can be
majorized by plane (right).

di jn |w
H
inxi j | ≤




di jn

2βi jn
|wH

inxi j |
2 +

1
2

di jn βi jn

(di jn ≥ 0)
1
2

di jn
(
ωi jnw

H
inxi j + ωi jnwH

inxi j
)

(di jn < 0)

,

(13)

where ∗ is the complex conjugate of ∗, βi jn > 0 is a real
auxiliary variable, and ωi jn is a complex auxiliary vari-
able that satisfies ���ωi jn

��� = 1. The equality of Eq. (13)
holds only when βi jn = |w

H
inxi j | (di jn ≥ 0) and ωi jn =

wH
inxi j/|w

H
inxi j | (di jn < 0). Applying Eq. (13) to Eq. (11),

we obtain the majorization function J2 as follows:

J1 ≤ J2 = J
∑
i,n

[
wH
inUinwin + wH

inrin + rH
inwin

]

− 2J
∑
i

log |detWi | + const., (14)

Uin =
1
J

∑
j

(
1
αi jn

+
max(0, di jn)

2βi jn

)
xi j x

H
i j, (15)

rin =
1
J

∑
j

ωi jn

2
min(di jn, 0)xi j . (16)

Since Eq. (14) contains a linear term in win, we still
cannot apply IP to Eq. (14). Instead, we apply another type
of vectorwise coordinate descent to minimize functions such
as Eq. (14). In this algorithm, we focus on win, namely,
the Hermitian transpose of the particular row vector of Wi .
Equation (14) can be transformed as follows by cofactor
expansion:

J2 = J
∑
i,n

[
wH
inUinwin + wH

inrin + rH
inwin

]

− J
∑
i

log|bH
inwin |

2 + const., (17)

where bin is the column vector of Bi = (bi1, . . . , biN ), which
is the adjugate matrix of Wi . bin can also be written as
bin = (detWi)W−1

i en, where en is an N-dimensional vector
whose nth element is one and whose other elements are zero.
Since bin only depends on win′ (n′ , n) and is independent

of win, Eq. (17) can be regarded as a function of win by
fixing the other row vectors of Wi . The partial derivative of
Eq. (17) w.r.t. wH

in is

∂J2

∂wH
in

= Uinwin + rin −
bin

wH
inbin

. (18)

From ∂J2/∂w
H
in = 0, the stationary point is given in [14] as

win =




U−1
in

[
1
√

ubb
bin − rin

]
(if ubr = 0)

U−1
in



ubr
2ubb

*
,
1 −

√
1 +

4ubb
|ubr |2

+
-
bin − rin


(otherwise)

,

(19)

where ubb = bH
inU

−1
in bin and ubr = bH

inU
−1
in rin. Substituting

the equality condition of the auxiliary variables for Eq. (19),
the update rule of win can be obtained as follows:

di jn ←
1

|wH
inxi j |

+ log(|wH
inxi j |/

∑
k tiknvk jn) − 2, (20)

Uin ←
1
J

∑
j

*
,

1
|wH

inxi j |
+

max(0, di jn)

2|wH
inxi j |

+
-
xi j x

H
i j, (21)

r̃in ←
1
J
U−1
in

∑
j

1
2

wH
inxi j

|wH
inxi j |

min(di jn, 0)xi j, (22)

w̃in ← U−1
in W

−1
i en, (23)

uww ← w̃H
inUin w̃in, (24)

uwr ← w̃H
inUin r̃in, (25)

win ←




w̃in
√

uww
− r̃in (if uwr detWi = 0)

uwr
2uww

*
,
1 −

√
1 +

4uww
|uwr |2

+
-
w̃in − r̃in

(otherwise)

. (26)

In KL-ILRMA, the cost function Eq. (6) is minimized
by alternately repeating the update of the source spectro-
grams Tn and Vn using Eqs. (8) and (9), and the update of
the demixing matrix Wi using Eqs. (20)–(26). Since all up-
date rules in KL-ILRMA are derived by the MM algorithm,
a monotonic decrease in the cost is guaranteed.

3. Numerical Simulation

3.1 Evaluation of KL-ILRMA with Toy Model

We confirmed that KL-ILRMA is valid for separating
sources that follow a time-frequency-varying complex Pois-
son distribution by using an artificial sound source model,
i.e., a toy model. We created the toy model via the following
three steps. First, we generated each entry of T̃n ∈ R

I×K
≥0 and

Ṽn ∈ R
K×J
≥0 with independent gamma distributions. Sec-

ond, we calculated the normalized low-rank matrix Rn by
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Fig. 2 Recording conditions of impulse responses E2A (T60 = 300 ms)
obtained from RWCP database [16]: (a) IR1 and (b) IR2.

Fig. 3 Average SDR improvements of IS-ILRMA and KL-ILRMA for
toy model separation.

dividing T̃nṼn by themaximumvalue of T̃nṼn. Third, we ob-
tained the source spectrogram matrix Sn whose ith row and
jth column entry is generated from the independent complex
Poisson distribution with the shape (mean) parameter λi jn
given by each entry of cRn, where c is the scale parameter of
the toy model. In this experiment, the toy model was created
with a size of I = 257 and J = 514. The number of bases
was K = 10, and the kurtosis of each gamma distribution
was set to 12 in T̃n and 2 in Ṽn. Note that in the time-
frequency-varying complex Poisson distribution, λi jn con-
trols both the shape of the distribution and the spectrogram
strength, and consequently, various settings for the scale pa-
rameter c should be tested; we set c = 1, 2, 3, 4, 5, 10, 15, and
20.

We produced the two-channel observed signals by con-
voluting the IR1 impulse response (shown in Fig. 2(a))
with each source. We used the source-to-distortion ratio
(SDR) [15] as the total separation performance. The num-
ber of bases of the source model in each ILRMA was 10,
which is the same as the number of bases used to generate
the toy model, and the number of iterations was 200. The
initial demixing matricesWi were set to the ideal value with
5% noise, and the initial source model matrices Tn and Vn

were set to uniformly distributed random values.
Figure 3 shows the SDR improvement for each method

plotted against the scale parameter c, where the plotted val-
ues are the average of 20 trials with different initial values of
Tn andVn, and the error bar represents the standard deviation.
KL-ILRMA outperforms IS-ILRMA for all values of c, and
the standard deviation of KL-ILRMA is within 0.03 dB and
much less than that of IS-ILRMA. This result clearly implies
the robustness of KL-ILRMA against the initialization of the
source model, which is due to the convex property of KL-

Table 1 Music sources obtained from SiSEC2011.
Index Source (1/2) Impulse response
No. 1 A. guitar/vocal IR1
No. 2 A. guitar/vocal IR2
No. 3 A. guitar/piano IR1
No. 4 A. guitar/piano IR2

Fig. 4 Original and separated spectrograms for No. 2 in KL-ILRMA.We
only show truncated spectrograms with three-second duration.

NMF. Although KL-ILRMA causes a mismatch between the
cost function Eq. (6) and the log-likelihood function Eq. (4)
of the generative model due to the Stirling approximation
Eq. (5), the approximation has no practical effect because the
SDR improvement of KL-ILRMA is greater than or around
20 dB.
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Fig. 5 Average SDR improvements for MNMF, t-MNMF, IS-ILRMA,
t-ILRMA, and KL-ILRMA.

3.2 Evaluation of KL-ILRMA with Audio Source Separa-
tion

We compared the separation performance of KL-ILRMA
with those of other conventional methods: MNMF [5], t-
MNMF [10], IS-ILRMA [6], and t-ILRMA [11]. We used
the music signal bearlin-roads in SiSEC2011 [17] as the
dry sources, where acoustic guitar, vocal, and piano were
used. We produced four different two-channel observed sig-
nals (No. 1–No. 4) by convoluting the IR1 and IR2 impulse
responses (respectively shown in Figs. 2(a) and (b))with each
source. Table 1 shows the pair of instruments and impulse
response for each source. In IS-ILRMA, t-ILRMA, and KL-
ILRMA, the initial demixing matrices were set to identity
matrices and the entries of the initial source model matrices
were set to uniformly distributed random values. In MNMF
and t-MNMF, the initial values of the parameters were set
as in [5]. The degree of freedom parameter in t-MNMF was
set to ν = 1 and the degree of freedom parameter and the
domain parameter in t-ILRMA were set to ν = 3 and p = 2,
respectively, which were the best settings for this experi-
ment. In t-ILRMA, we applied a tempering technique based
on [11]. The sampling frequency was 16 kHz. An STFT
was performed using a 512-ms-long Hamming window with
a 128-ms-long shift. The numbers of iterations, bases, and
trials were set to 200, 10, and 20, respectively.

Figure 4 shows an example of separated spectrograms
for No. 2, where we depict the original source spectrograms
as reference and their low-rank models estimated in KL-
ILRMA. It is confirmed that the proposed method can ap-
proximate the source spectrograms by low-rank matrices ap-
propriately.

Figure 5 shows the average SDR improvements for each
method, where the error bar represents the standard devia-
tion. In terms of the average improvements, KL-ILRMA

outperforms the other methods for No. 2–No. 4, and the
standard deviation of KL-ILRMA is the smallest among the
methods for all mixed signals. This result confirms the abil-
ity of KL-ILRMA for the stable estimation of sources.

4. Conclusion

We proposed a new BSS method, KL-ILRMA, which esti-
mates the low-rank source model via a convex optimization
based on generalized KL divergence. We derived the update
rule in KL-ILRMA using the MM algorithm to guarantee
a monotonic decrease in the cost function. From the ex-
perimental evaluation, we confirmed the robustness of KL-
ILRMA against the parameter initialization and its ability
for the stable estimation of sources.
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Appendix: Validity of Time-Frequency-Varying Com-
plex Poisson Distribution Model

As shown in Sect. 2.2, the low-rank approximation based on
the time-frequency-varying complex Poisson distribution is
equivalent to KL-NMF. In this appendix, we clarify what
kind of real-world signal follows the statistical model.

We compared the accuracy for modeling various real-
world signalswith the time-frequency-varying complexPois-
son distribution (KL-NMF) and the time-frequency-varying
complex Gaussian distribution (IS-NMF). We used three
kinds of signals for evaluation: 18 music signals, 18 speech
signals [17], and 18 environmental sounds [18], [19]. We
plotted the source-to-artifact ratio (SAR) of the signals ap-
proximated via both NMFs in Fig. A· 1. We can confirm that
SAR of the signals approximated via KL-NMF is higher than
that approximated via IS-NMF. This result indicates that the
generative model based on the time-frequency-varying com-
plex Poisson distribution can be valid for real-world signals,
especially for music signals.

Fig. A· 1 Box-and-whisker plot on SAR of signals approximated via IS-
NMF and KL-NMF: (a) music signals, (b) speech signals, and (c) environ-
mental sounds.
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