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PAPER
Supervised Audio Source Separation Based on Nonnegative Matrix
Factorization with Cosine Similarity Penalty

Yuta IWASE†, Nonmember and Daichi KITAMURA†a), Member

SUMMARY In this study, we aim to improve the performance of audio
source separation for monaural mixture signals. For monaural audio source
separation, semisupervised nonnegative matrix factorization (SNMF) can
achieve higher separation performance by employing small supervised sig-
nals. In particular, penalized SNMF (PSNMF) with orthogonality penalty
is an effective method. PSNMF forces two basis matrices for target and
nontarget sources to be orthogonal to each other and improves the separa-
tion accuracy. However, the conventional orthogonality penalty is based
on an inner product and does not affect the estimation of the basis matrix
properly because of the scale indeterminacy between the basis and acti-
vation matrices in NMF. To cope with this problem, a new PSNMF with
cosine similarity between the basis matrices is proposed. The experimental
comparison shows the efficacy of the proposed cosine similarity penalty in
supervised audio source separation.
key words: audio source separation, nonnegative matrix factorization,
orthogonality, cosine similarity

1. Introduction

Audio source separation is a technique of separating or ex-
tracting individual audio sources from the observed mix-
ture signal. In particular, nonnegative matrix factorization
(NMF) [1], [2] has been utilized in many situations [3]–[7],
depending on the recording conditions and applications. As
shown in Fig. 1, NMF is an algorithm that decomposes an
observed nonnegative matrix X into two nonnegative matri-
ces, a basis matrix F and an activation matrix Q. The ba-
sis matrix includes frequently appearing spectral patterns in
the observed matrix as basis vectors, and their time-varying
gains are included in the activation matrix. Audio source
separation can be achieved by clustering these estimated
components into each source.

In recent years, deep learning methods have attracted
wide attention and achieved high performance even in the
source separation field. However, when the training data
of target sources are excessively limited, the performance of
deep-learning-based approaches degrades markedly. In such
a situation, supervised or semisupervised NMF [8], [9] is
still a promising algorithm, in which spectral patterns of the
target sources are pretrained using only one sequence of their
sample sounds, e.g., octave notes of the target instruments.
In this paper, we only focus on a problem of music source
separation based on SNMF, where only few sample notes of
the target instruments are available as a supervision.

Manuscript received November 12, 2021.
Manuscript publicized December 8, 2021.
†The authors are with the National Institute of Technology,

Kagawa College, Takamatsu-shi, 761-8058 Japan.
a) E-mail: kitamura-d@t.kagawa-nct.ac.jp
DOI: 10.1587/transfun.2021EAP1149

Fig. 1 Matrix decomposition by NMF. Amplitude spectrogram of audio
signal is input as nonnegative matrix.

Fig. 2 SNMF algorithm. In training stage, sample sound of target source
is decomposed by simple NMF, and supervised basis matrix F is obtained,
which represents spectral patterns of target source. In separation stage,
mixture sound is decomposed while F is fixed.

Figure 2 shows the SNMF-based source separation al-
gorithm that consists of training and separation stages. In
the training stage, an amplitude spectrogram of the sample
sound of the target source, X , is decomposed by simple
NMF, and the supervised basis matrix F is obtained. In the
separation stage, an amplitude spectrogram of the observed
mixture Y is decomposed into the target spectrogram FG
and the other (nontarget) spectrogram HU using the fixed
supervised basis matrix F.

When the target and nontarget sources in the observed
mixture contain similar spectra, the separation performance
of SNMF degrades. This is due to the fact that similar spec-
tra can be represented by either the supervised basis matrix
F or the nontarget basis matrix H . In this case, either of the
following problems occur: (a) some components of the target
source are incorrectly included in HU , or (b) some compo-
nents of the nontarget sources are inappropriately captured
by FG. Since SNMF utilizes the sample sound of only the
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target source, there exists a trade-off between the problems
(a) and (b).

Penalized SNMF (PSNMF) [9] is a technique that ad-
dresses the above-mentioned trade-off problem. PSNMF
forces the nontarget basismatrixH to be orthogonal to the su-
pervised basis matrix F by adding an orthogonality penalty
in the optimization of the separation stage. This is direct
solution for the problem (a). We can avoid lack of the target
source components in the estimated matrix FG, although
the problem (b) might be encouraged. Since semisupervised
techniques aim to accurately extract the target source from
a mixture, ensuring sound quality of the estimated target
source is an important objective for many applications, e.g.,
music editing software. In addition, by tuning intensity of
the orthogonality penalty, PSNMF can control the trade-off
between the problems (a) and (b), which enables us to apply
audio source separation to various objectives.

The penalty termproposed in [9] is defined as ‖FTH ‖2Fr,
a sum of the inner products between all the bases in F and
H (‖ · ‖Fr is the Frobenius norm). Since the spectral patterns
in H become dissimilar from those in F, the separation per-
formance is greatly improved. However, the formulation of
conventional PSNMF is incorrect because the orthogonality
penalty ‖FTH ‖2Fr does not affect the estimation of H prop-
erly owing to the scale indeterminacy between the basis and
activation matrices in NMF.

In this paper, to solve the above-mentioned problem,
two new orthogonality penalties based on cosine similar-
ity are introduced to PSNMF. Since cosine similarity does
not depend on scales of vectors, the proposed methods can
appropriately force the nontarget spectral bases inH to be or-
thogonal to those in F even if the scale indeterminacy exists
betweenH andU . A convergence-guaranteedmultiplicative
update rule of the proposed methods is derived on the ba-
sis of the majorization-minimization (MM) algorithm [10].
The validity of the proposed methods is confirmed by music
source separation experiments.

2. Conventional Methods

2.1 NMF and SNMF

The optimization problem in NMF [1], [2] is formulated as

min
F ,Q
D(X ‖FQ) s.t. fik,qk j′ ≥ 0 ∀i, j ′, k, (1)

where X ∈ RI×J′
≥0 is a nonnegative observed matrix and is an

amplitude spectrogram in this paper. In addition, F ∈ RI×K
≥0

and Q ∈ RK×J
′

≥0 are the basis and activation matrices, fik
and qk j′ are the elements of F and Q, and i = 1,2, . . . , I,
j ′ = 1,2, . . . , J ′, and k = 1,2, . . . ,K represent the indices of
frequency bins, time frames, and basis vectors, respectively.
Moreover, D(M ‖N ) is a divergence function between two
input matrices M ∈ RI×J

≥0 and N ∈ RI×J
≥0 . In this paper, we

only consider the generalized Kullback–Leibler (KL) diver-
gence because it is experimentally confirmed that the KL-
divergence-based NMF provides the highest performance for

NMF-based audio source separation [9], [11]. The KL di-
vergence is defined as

D(M ‖N ) =
∑
i, j

(
mi j log

mi j

ni j
− mi j + ni j

)
, (2)

where mi j and ni j are the elements of matrices M and N ,
respectively, and j = 1,2, . . . , J. Thus, F and Q can be
estimated by solving the minimization problem of Eq. (1).

In SNMF [8], the supervised basis matrix F is pre-
trained by applying simple NMF to the sample signal X of
the target audio source in the training stage. The basis matrix
F contains the frequently appearing spectral patterns of the
target source as K column vectors (bases). In the separa-
tion stage, the amplitude spectrogram of the mixture signal
Y ∈ RI×J

≥0 is decomposed using the supervised basis matrix
F as follows:

min
G,H ,U

D(Y ‖FG + HU)

s.t. gk j, hil,ul j ≥ 0 ∀i, j, k, l, (3)

where G ∈ RK×J
≥0 is the activation matrix for F. More-

over, H ∈ RI×L
≥0 and U ∈ RL×J

≥0 are the basis and activation
matrices for representing nontarget sources, and gk j , hil ,
and ul j are the elements of G, H , and U , respectively, and
l = 1,2, . . . , L represents the index of bases in H . Ideally,
the components of the target source in Y are extracted as
FG, and the components of the other nontarget sources are
modeled by HU , resulting in the separation of target and
notarget sources. However, when the target and nontarget
sources contain similar spectra, the components can be rep-
resented by either F or H . This ambiguity will cause the
following problem: part of the target source is captured by
HU or part of the nontarget sources is mixed into FG, which
degrades the accuracy of source separation.

2.2 Conventional PSNMF Based on Inner Product

To solve the above-mentioned problem, PSNMF [9] was
proposed. In PSNMF, the nontarget bases in H are forced
to be as orthogonal as possible to the supervised bases in F
by imposing an orthogonality penalty to the cost function of
the separation stage as follows:

min
G,H ,U

D(Y ‖FG + HU) + µPinner(F,H)

s.t. gk j, hil,ul j ≥ 0 ∀i, j, k, l, (4)

where µ > 0 is the weight coefficient and Pinner(F,H) is
defined as

Pinner(F,H) = ‖F
TH ‖2Fr

=
∑
k ,l

(∑
i

fikhil

)2

. (5)

The penalty term Pinner(F,H) corresponds to the sum of
squared inner products between two bases in F and H .
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Therefore, the nontarget basis matrix H is estimated by tak-
ing the following perspectives into account: (i) the diver-
gence between Y and FG + HU should be minimized and
(ii) the bases in H should be as orthogonal as possible to the
bases in F. As a result, the source separation performance
of PSNMF is greatly improved from that of SNMF [9].

The update rules for the variables G, H , and U based
on the MM algorithm [10] are respectively derived as fol-
lows [9]:

gk j ← gk j ·

∑
i

yi j∑
k′ fik′gk′ j+

∑
l′ hil′ul′ j

fik∑
i fik

, (6)

hil ← hil ·

∑
j

yi j∑
k′ fik′gk′ j+

∑
l′ hil′ul′ j

ul j∑
j ul j + µ fik

∑
i′ fi′khi′l

, (7)

ul j ← ul j ·

∑
i

yi j∑
k′ fik′gk′ j+

∑
l′ hil′ul′ j

hil∑
i hil

, (8)

where yi j is the element of Y .

3. Proposed Method

3.1 Motivation and Strategy

In conventional PSNMF Eq. (4), the penalty term
Pinner(F,H) is minimized to increase the dissimilarity be-
tween F and H . However, in practice, the penalty term
Pinner(F,H) can be minimized by simply multiplying H by
α > 0 as

lim
α→+0

Pinner(F, αH) = lim
α→+0

α‖FTH ‖2Fr

= 0. (9)

In this case, the activation matrix U can be updated as U ←
α−1U so that the value of divergence does not change, i.e.,

D(Y ‖FG + αH[α−1U]) = D(Y ‖FG + HU). (10)

For this reason, the penalty term Pinner(F,H) does not affect
the optimization ofH , and the minimization problem Eq. (4)
is equivalent to Eq. (3). Therefore, the orthogonalization
between the bases in F and H is not properly performed in
conventional PSNMF Eq. (4).

To cope with this problem, in [9], PSNMF is imple-
mented with a basis normalization process hl ← hl/‖hl ‖
and ul ← ‖hl ‖ul after every update of H so that the ma-
trix HU does not change, where hl = [h1l, h2l, · · · , hIl]

T,
ul = [ul1,ul2, · · · ,ulJ ]T, and ‖ · ‖ is an arbitrary norm. Al-
though the source separation performance is improved by
this heuristic implementation technique, this iterative nor-
malization process is not a fundamental (or mathematical)
solution. In addition, this basis normalization can increase
the value of cost function Eq. (4), hence theoretical conver-
gence of the MM algorithm (the update rules Eqs. (6)–(8))
is lost.

A similar problem was pointed out in the context of
sparse NMF [12], where sparse regularization based on the

L1 norm of the activation matrix is imposed to the cost func-
tion of simple NMF. For the sparse NMF, in [13], a norm
constraint of bases is newly imposed to the NMF optimiza-
tion to avoid the scale indeterminacy problem. Although
PSNMF may be solved by introducing the same constraint
as in [13], the theoretical convergence in this approach can-
not be ensured. This is because the method [13] utilizes
fraction-based update rules with positive and negative terms
in the gradient. This heuristic update rule has often appeared
in the history of NMF-based methods (e.g., [14], [15]), but
its theoretical convergence with the norm constraint has not
been proven.

In this paper, to solve the problem in conventional
PSNMF, we propose to utilize cosine similarity as an or-
thogonality penalty term. Since cosine similarity depends
on only the angle between two input vectors, we can measure
the orthogonality regardless of the lengths of the vectors and
the scale indeterminacy in NMF does not affect the penalty
term. We propose two types of cosine similarity penalty:
logarithmic cosine similarity (hereafter referred to as Log-
Cos PSNMF) and simple cosine similarity (hereafter referred
to as Cos PSNMF) penalties. In addition, we derive MM-
algorithm-based (convergence-guaranteed) update rules for
both Log-Cos PSNMF and Cos PSNMF and obtain a tuning-
free and easy-to-use optimization algorithm.

3.2 Proposed Method 1: Log-Cos PSNMF

3.2.1 Cost Function

In Log-Cos PSNMF, we consider the following optimization
problem:

min
G,H ,U

J1 s.t. gk j, hil,ul j ≥ 0 ∀i, j, k, l, (11)

where

J1 = D(Y ‖FG + HU) + µPlogcos(F,H), (12)

Plogcos(F,H) =
∑
k ,l

log
∑

i fikhil(∑
i f 2

ik

) 1
2
(∑

i h2
il

) 1
2

(13)

=
∑
k ,l

[
log

∑
i

fikhil −
1
2

log
∑
i

f 2
ik

−
1
2

log
∑
i

h2
il

]
. (14)

The penalty term Plogcos(F,H) corresponds to the sum of
logarithmic cosine similarities for all combinations of super-
vised bases in F and nontarget bases in H . The logarithm
function in Eq. (13) is employed to decompose the cosine
similarity as Eq. (14), resulting in a simpler form of the
MM-algorithm-based update rules compared with those of
Cos PSNMF.
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3.2.2 Derivation of MM-Algorithm-Based Update Rules

Since it is difficult to directly minimize the cost function
Eq. (12), we use the MM algorithm [10] as in conventional
PSNMF. Note that since the penalty term Plogcos(F,H) in
Eq. (12) does not depend on the activation matrices G and
U , the update rules for G and U that minimize Eq. (12) are
equivalent to Eqs. (6) and (8), respectively.

The cost function Eq. (12) can be rewritten as follows:

J1 =
∑
i, j

[
yi j log yi j − yi j log

(∑
k

fikgk j +
∑
l

hilul j

)
− yi j +

∑
k

fikgk j +
∑
l

hilul j

]
+ µ

∑
k ,l

[
log

∑
i

fikhil −
1
2

log
∑
i

f 2
ik

−
1
2

log
∑
i

h2
il

]
. (15)

The second, sixth, and eighth terms of Eq. (15) contain
the sum of the variables (gk j , hil , and ul j) in a logarithm
function, and it is difficult to calculate the stationary point
w.r.t. the variables. In theMMalgorithm, we design an upper
bound function to indirectly optimize the cost functionwhose
stationary points are difficult to calculate. Since the second
term, i.e., the negative logarithmic function (− log(·)), is a
convex function, by applying Jensen’s inequality, we can
design the upper bound function as follows:

− log

(∑
k

fikgk j +
∑
l

hilul j

)
= − log

(∑
k

αi jk fikgk j
αi jk

+
∑
l

βi jlhilul j
βi jl

)
≤ −

∑
k

αi jk log
fikgk j
αi jk

−
∑
l

βi jl log
hilul j
βi jl

,

(16)

where αi jk > 0 and βi jl > 0 are auxiliary variables that
satisfy

∑
k αi jk+

∑
l βi jl = 1. Similarly to Eq. (16), we design

the upper bound function of the eighth term of Eq. (15) as

− log
∑
i

h2
il = − log

∑
i

γil
h2
il

γil

≤ −
∑
i

γil log
h2
il

γil
,

= −2
∑
i

γil log hil +
∑
i

γil log γil, (17)

where γil > 0 is an auxiliary variable that satisfies
∑

i γil =
1. The equality in Eqs. (16) and (17) respectively holds if

and only if

αi jk =
fikgk j∑

k′ fik′gk′ j +
∑

l hilul j
, (18)

βi jl =
hilul j∑

k fikgk j +
∑

l′ hil′ul′ j
, (19)

γil =
h2
il∑

i′ h2
i′l

. (20)

The sixth term of Eq. (15) is a positive logarithm
(+ log(·)) function that includes the sum of the variables
(hil). Since the positive logarithmic function is a concave
function, by applying the tangent-line inequality, the upper
bound function can be designed as

log
∑
i

fikgk j ≤
1
δkli

(∑
i

fikgk j − δkli

)
+ log δkli,

(21)

where δkli > 0 is an auxiliary variable. The equality in
Eq. (21) holds if and only if

δkli =
∑
i

fikhil . (22)

FromEqs. (16), (17), and (21), the upper bound function
J+1 of J1 can be designed as

J1 ≤ J
+

1

=
∑
i, j

[
yi j log yi j

− yi j

(∑
k

αi jk log
fikgk j
αi jk

+
∑
l

βi jl log
hilul j
βi jl

)
− yi j +

∑
k

fikgk j +
∑
l

hilul j

]
+ µ

∑
k ,l

[
1
δkli

(∑
i

fikhil − δkli

)
+ log δkli

−
1
2

log
∑
i

f 2
ik −

∑
i

γil log hil

+
1
2

∑
i

γil log γil

]
. (23)

The update rule for hil can be derived by solving
∂J+1 /∂hil = 0 w.r.t. hil as

hil =

∑
j yi j βi jl + µ

∑
k γil∑

j ul j + µ
∑

k
fik
δkli

. (24)

By substituting the equality conditions Eqs. (19), (20), and
(22) for Eq. (24), we obtain the multiplicative update rule for
hil as
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hil ← hil ·

∑
j

yi j∑
k′ fik′gk′ j+

∑
l′ hil′ul′ j

ul j + µK hil∑
i′ h

2
i′l∑

j ul j + µ
∑

k
fik∑

i′ fi′khi′l

.

(25)

Note that Eq. (25) coincides with Eq. (7) when µ = 0.
By iterating the update rule Eq. (25), we can estimate

H that tends to be orthogonal to F. However, in Log-Cos
PSNMF, the penalty term Plogcos(F,H) becomes −∞ when
hl is perfectly orthogonal to any bases in F or hl = 0 for any
l. In such a case, the update rule Eq. (25) is undefined, and
the solution of minimization problem Eq. (11), J1 → −∞, is
meaningless. To avoid this inherent problem, the following
flooring process [16] is applied in each iteration:

hil ← max(hil, ε), (26)

where ε is the machine epsilon and max(·) is a function that
returns the largest value of the input arguments.

3.3 Proposed Method 2: Cos PSNMF

3.3.1 Cost Function

Log-Cos PSNMF utilizes a logarithm function in the penalty
Plogcos(F,H) to decompose the cosine similarity function.
This logarithm function makes the cost function J1 un-
bounded, namely, the minimum value of J1 becomes −∞.
We apply the flooring Eq. (26) to avoid themeaningless solu-
tion, but such heuristic treatment is not essential aswell as the
basis normalization described in Sect. 3.1. To cope with this
problem, we propose Cos PSNMF, which utilizes a simple
cosine similarity penalty. Although derivation and update
rules becomemore complicated comparedwith those in Log-
Cos PSNMF, we can still obtain a convergence-guaranteed
optimization algorithm in this formulation.

We consider the following optimization problem:

min
G,H ,U

J2 s.t. gk j, hil,ul j ≥ 0 ∀i, j, k, l, (27)

where

J2 = D(Y ‖FG + HU) + µPcos(F,H), (28)

Pcos(F,H) =
∑
k ,l

∑
i fikhil(∑

i f 2
ik

) 1
2
(∑

i h2
il

) 1
2
. (29)

In Cos PSNMF, the logarithm function in Plogcos(F,H) is
omitted, and the minimum value of the cost function Eq. (28)
is bounded by zero.

3.3.2 Derivation of MM-Algorithm-Based Update Rules

Similarly to Log-Cos PSNMF, direct minimization of the
cost function Eq. (27) is difficult, and we apply the MM
algorithm. The update rules of G and U are equivalent to
Eqs. (6) and (8), respectively.

The penalty term Pcos(F,H) includes (
∑

i h2
il
)−1/2, and

this function hinders the direct calculation of a stationary
point w.r.t. hil . Since this function is convex, we can design
the upper bound function by applying Jensen’s inequality as
follows:(∑

i

h2
il

)− 1
2

=

(∑
i

εil
h2
il

εil

)− 1
2

≤
∑
i

εil

(
h2
il

εil

)− 1
2

=
∑
i

ε
3
2
il

h−1
il , (30)

where εil > 0 is an auxiliary variable that satisfies
∑

i εil = 1.
The equality in Eq. (30) holds if and only if

εil =
h2
il∑

i′ h2
i′l

. (31)

From Eqs. (16) and (30), the upper bound function J+2
of J2 can be designed as

J2 ≤ J
+

2

=
∑
i, j

[
yi j log yi j

− yi j

(∑
k

αi jk log
fikgk j
αi jk

+
∑
l

βi jl log
hilul j
βi jl

)
− yi j +

∑
k

fikgk j +
∑
l

hilul j

]

+ µ
∑
k ,l


(∑

i′

f 2
i′k

)− 1
2
(∑
i′,i′′

fi′kε
3
2
i′′l

hi′l
hi′′l

) . (32)

The update rule for hil can be derived by solving
∂J+2 /∂hil = 0 w.r.t. hil . The derivative can be obtained
as ∑

j

[
−yi j βi jl

hil
+ ul j

]
+µ

∑
k


(∑

i′

f 2
i′k

)− 1
2

(
−

1
h2
il

ε
3
2
il

∑
i′,i

fi′khi′l + fik
∑
i′,i

ε
3
2
i′l

1
hi′l

)]
= 0. (33)

Rearrangement of Eq. (33) gives the quadratic equation

ailh2
il + bilhil + cil = 0, (34)

where

ail =
∑
j

ul j + µ
∑
k

fik

(∑
i′

f 2
i′k

)− 1
2
(∑
i′,i

ε
3
2
i′l

1
hi′l

)
,

(35)

bil = −
∑
j

yi j βi jl, (36)
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cil = −µε
3
2
il

∑
k

(∑
i′

f 2
i′k

)− 1
2
(∑
i′,i

fi′khi′l

)
. (37)

Thus, the stationary point of J+2 w.r.t. hil is given by the
quadratic formula:

hil =
−bil ±

√
b2
il
− 4ailcil

2ail
, (38)

where ± in Eq. (38) should be determined so that the r.h.s. of
Eq. (38) becomes nonnegative.

Similarly to Eq. (25), a unified update rule of hil can
be obtained by substituting the equality conditions Eqs. (19),
(20), and (31) for Eq. (38). Since the unified update rule
becomes complicated, we instead show the update rules of
ail , bil , and cil:

ail ←
∑
j

ul j

+ µ
∑
k

fik

(∑
i′

f 2
i′k

)− 1
2 

∑
i′,i

h2
i′l

(∑
i′′

h2
i′′l

)− 3
2  ,
(39)

bil ← −
∑
j

yi j
hilul j∑

k fikgk j +
∑

l′ hil′ul′ j
, (40)

cil ← −µ

(
h2
il∑

i′ h2
i′l

) 3
2 ∑

k

(∑
i′

f 2
i′k

)− 1
2
(∑
i′,i

fi′khi′l

)
.

(41)

The up-to-date variable hil is obtained by calculatingEq. (38)
after the update of Eqs. (39)–(41). Note that Eqs. (38)–(41)
coincide with Eq. (7) when µ = 0.

4. Experiment

4.1 Conditions

To confirm the validity of the proposedmethods, we compare
the performances of simple SNMF, conventional PSNMF [9]
(Inner-Prod. PSNMF), Log-Cos PSNMF, and Cos PSNMF.
In the experiments, we used the artificial audio sources
produced by a Yamaha MU-1000 synthesizer in songKi-
tamura [6], [17] as the development and test datasets. Two
instrumental melodies were selected from the eleven instru-
ments, namely, oboe, trumpet, horn, flute, violin, clarinet,
piano, harpsichord, trombone, bassoon, and cello, and we
mixed them with the same power to produce a two-source
mixture monaural signal Y , resulting in 90 mixture sig-
nals. Then, we randomly split 90 mixture signals into 45
development dataset and 45 test dataset. The development
dataset was used to find the optimal hyperparameter µ in
each method, and the test dataset was used for performance
comparison. For the sample sound in the training stage, two-
octave ascending notes of the target instrument were used as

X for obtaining the supervised basis matrix F.
The source-to-distortion ratio (SDR) [18] was used as

the evaluation score, which includes both the quality of the
separated target sound (absence of artificial noise) and the
degree of separation (absence of nontarget source compo-
nents). The initial values of each matrix were set to uni-
formly distributed random values in (0, 1). The window and
shift lengths in short-time Fourier transform were set to 92.9
ms and 46.4 ms, respectively. The numbers of bases for the
target and nontarget sources were K = 27 (24 notes and three
common spectra) and L = 50, respectively.

For Inner-Prod. PSNMF, as described in Sect. 3.1, we
must apply the following basis normalization to validate the
penalty term Pinner(F,H):

hil ←
1
dl

hil, (42)

ul j ← dlul j, (43)

where dl =
∑

i hil . This normalization was performed after
the update of all the parameters in each iteration. Also,
for Log-Cos PSNMF, we performed both Eq. (26) (after the
update of hil) and Eqs. (42) and (43) to avoid numerical
instability.

4.2 Results

4.2.1 Hyperparameter Tuning Using Development Dataset

Figure 3 shows average SDR behaviors for the develop-
ment dataset in each method. We can confirm that two
proposed methods, Log-Cos PSNMF and Cos PSNMF, out-
perform Inner-Prod. PSNMF at the optimal hyperparameter
setting. This is because the penalty terms Plogcos(F,H) and
Pcos(F,H) appropriately force the orthogonality between
the supervised and nontarget bases in the optimization of H ,
whereas the conventional penalty term Pinner(F,H) does not
directly affect the optimization because of the scale indeter-
minacy in NMF; the scale of H simply decreases when we
set a large µ value. However, since the proposed methods

Fig. 3 Average SDR behaviors of development dataset. Weight coeffi-
cient µ that provides highest average SDR in development dataset is used
for performance comparison with test dataset.
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Fig. 4 Violin plot of 45 SDR results in test dataset. In each method,
white circle indicates median value, gray vertical line shows range of 25–75
percentiles, and violin-shape curve is estimated distributions.

Table 1 Average and median values for test dataset.
Method Average [dB] Median [dB]
SNMF 6.07 5.95

Inner-Prod. PSNMF 7.01 6.81
Log-Cos PSNMF 7.75 7.69
Cos PSNMF 7.82 8.23

eliminate the scale indeterminacy problem, the optimal µ
becomes relatively peaky compared with that of the conven-
tional PSNMF.

4.2.2 SDR Comparison Using Test Dataset

The SDR values of each method for the test dataset were
compared, where the hyperparameter µ in each PSNMF was
set to the optimal value that provides the highest scores in
the development dataset (Fig. 3). The violin plot of 45 SDR
results is shown in Fig. 4. Also, average and median values
of the results are summarized in Table 1. We can confirm
that both Log-Cos PSNMF and Cos PSNMF outperform
the Inner-Prod. PSNMF in terms of average and median
values. In particular, Cos PSNMF provides the best median
value, whose improvement from that of Inner-Prod. PSNMF
is 1.42 dB. This result shows that the optimal settings of the
hyperparameter µ in Log-Cos PSNMF and Cos PSNMF do
not strongly depend on the type of instruments.

4.2.3 Statistical Testing

To evaluate the validity of SDR differences in Table 1, two
types of statistical testing were applied, namely, the pair-
wise one-sidedWelch’s t test [19] and the pairwise Brunner–
Munzel (BM) test [20]. The null hypotheses of the one-sided
Welch’s t test and the BM test are respectively as follows:

• The true means µA and µB of normally distributed sam-
ples in two groups A and B satisfy µA ≥ µB, where
variances of them are unequal.

• When we randomly select samples sA and sB from each
of two groups A and B, the probabilities of sA ≥ sB
and sA < sB are equal (stochastic equality).

Table 2 p values obtained by pairwise one-sided Welch’s t test.
Method of group A Method of group B p value [%]

SNMF Inner-Prod. PSNMF 0.3389
SNMF Log-Cos PSNMF 0.0001
SNMF Cos PSNMF 0.0000

Inner-Prod. PSNMF Log-Cos PSNMF 3.9434
Inner-Prod. PSNMF Cos PSNMF 2.0614
Log-Cos PSNMF Cos PSNMF 42.8965

Table 3 p values obtained by pairwise BM test.
Method of group A Method of group B p value [%]

SNMF Inner-Prod. PSNMF 3.1576
SNMF Log-Cos PSNMF 0.0056
SNMF Cos PSNMF 0.0000

Inner-Prod. PSNMF Log-Cos PSNMF 5.9094
Inner-Prod. PSNMF Cos PSNMF 0.9811
Log-Cos PSNMF Cos PSNMF 59.7709

Note that BM test does not assume the normal distribution
for observed data.

The p values obtained by each test are shown in Tables 2
and 3, respectively. When we compare the conventional and
proposed methods, the null hypotheses in each test can be
rejected with satisfactory confidence. For example, the p
values for comparing Inner-Prod. PSNMF and Cos PSNMF
are 2.06% and 0.98% in one-sided Welch’s t test and BM
test, respectively, which are satisfactory low. These results
show the efficacy of the proposed methods.

5. Conclusion

In this paper, we proposed new algorithms for SNMF us-
ing the cosine similarity penalty, where the scale indeter-
minacy in NMF does not affect the optimization of basis
and activation matrices. From the results of experiments
using mixtures of instrumental sources, we confirmed that
the proposed PSNMF using the cosine-similarity-based or-
thogonality penalty can improve the separation performance
compared with the conventional PSNMF using the inner-
product-based orthogonality penalty. Since the parameter
tuning for the proposed PSNMF becomes peaky, the predic-
tion of the optimal µ is our important future work.

Although we only focus on SNMF in this paper, it is
worth mentioning that the cosine similarity penalty can be
applied even in the simple (unsupervised) NMF decomposi-
tion Eq. (1) for all the bases in F. Since the orthogonality
between all the bases can be maximized, NMF with cosine
similarity can be used for a discriminative basis learning [21]
and as an alternative approach to sparse NMF.
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