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Music Signal Separation Based on Supervised Nonnegative Matrix
Factorization with Orthogonality and Maximum-Divergence
Penalties
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SUMMARY In this letter, we address monaural source separation based
on supervised nonnegative matrix factorization (SNMF) and propose a new
penalized SNMF. Conventional SNMF often degrades the separation per-
formance owing to the basis-sharing problem. Our penalized SNMF forces
nontarget bases to become different from the target bases, which increases
the separated sound quality.
key words: music signal separation, nonnegative matrix factorization, su-
pervised method

1. Introduction

In this study, we address monaural music signal separa-
tion using nonnegative matrix factorization (NMF) [1]–[3],
which decomposes an observed spectrogram into a basis
matrix and an activation matrix. The basis matrix involves
frequently appearing spectral patterns in the observed spec-
trogram as the column vectors, and the activation matrix in-
volves the time-varying gain corresponding to each basis. In
particular, supervised NMF (SNMF) [4] has been proposed,
which utilizes some sound samples of a target signal as su-
pervision for a priori training. In SNMF, a spectrogram of
the supervision sound is decomposed by conventional NMF
in a training process to generate the supervised basis matrix.
In the separation process, an observed spectrogram that con-
sists of target and interference sources is decomposed using
the supervised bases and other bases. Finally, the separated
target signal can be reconstructed from the supervised bases
and their activation.

Conventional SNMF incurs a risk of degrading the sep-
aration performance owing to the simultaneous generation
of similar spectral patterns in the supervised bases and other
bases. Here, we explain this phenomenon via a simpli-
fied example. Let X be an observed nonnegative matrix
whose rank is one. We can represent X using a (nonnegative
column) supervised basis vector a1 and the corresponding
(nonnegative column) activation vector b as X= a1bT+a20T,
where a2 is an arbitrary basis vector and 0 is a zero vec-
tor. If a2 is identical to a1, we can also represent X using

Manuscript received September 3, 2013.
Manuscript revised January 11, 2014.
†The authors are with Nara Institute of Science and Technol-

ogy, Ikoma-shi, 630-0192 Japan.
††The authors are with Research & Development, Yamaha Cor-

poration, Iwata-shi, 438-0192 Japan.
a) E-mail: daichi-k@is.naist.jp

DOI: 10.1587/transfun.E97.A.1113

other activation vectors b1 and b2 as X= a1bT
1+a2bT

2 , where
b = b1+ b2; the original activation vector b is split into b1

and b2, and then the separated signal a1bT
1 is distorted. In

SNMF, such basis sharing between the supervised bases and
other bases often occurs. This is because the cost function
in NMF is defined as the divergenceD (·‖·) between the ob-
served and reconstructed matrices, and unique decomposi-
tion is not guaranteed (D(X‖a1 bT) = D(X‖a1 bT

1 +a2bT
2 ) in

the above case).
To solve this problem, we propose a new penalized

SNMF (PSNMF), which employs a penalty term in the cost
function to force the other bases to become as different as
possible from the supervised bases. In this study, we intro-
duce two types of penalty term based on orthogonality and
divergence maximization, and we confirm their efficacy via
experimental evaluations.

2. Proposed PSNMF

2.1 Decomposition Model

The following equation represents the decomposition model
of PSNMF:

Y � FG + HU, (1)

where Y(∈ RΩ×T
≥ 0 ) is an observed spectrogram, F(∈ RΩ×K

≥ 0 ) is
a matrix that involves supervised spectral bases (dictionary)
of the target source as column vectors, G(∈ RK×T

≥ 0 ) is the ac-
tivation matrix that corresponds to F, H(∈ RΩ×L

≥ 0 ) is another
basis matrix that ideally involves residual spectral patterns,
and U(∈ RL×T

≥ 0 ) is the activation matrix that corresponds to
H. Moreover, Ω is the number of frequency bins, T is the
number of frames of the observed signal, K is the number of
supervised bases, and L is the number of the other bases. In
PSNMF, the supervised basis matrix F is trained in advance
via a target sound sample. After fixing F, the matrices G,
H, and U are optimized. Hence, FG ideally represents the
target source components and HU represents the other dif-
ferent components after decomposition.

2.2 Cost Functions

In this section, we propose two types of PSNMF algorithm.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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Hereafter, we denote the entries of the nonnegative matrices
Y, F, G, H, and U as yω,t, fω,k, gk,t, hω,l, and ul,t, respec-
tively. The cost function in NMF is defined as the arbitrary
divergence between Y and FG + HU. In this study, we pro-
pose the use of the following generalized cost function:

JNMF = Dβ (Y‖FG + HU) , (2)

whereDβ (·‖·) indicates β-divergence [5], defined as

Dβ(B‖A) =
∑
m,n

⎧⎪⎪⎨⎪⎪⎩
bβm,n
β (β − 1)

+
aβm,n
β
− bm,naβ−1

m,n

β − 1

⎫⎪⎪⎬⎪⎪⎭ , (3)

where A(∈ RM×N) and B(∈ RM×N) are matrices whose en-
tries are am,n and bm,n, respectively. This generalized diver-
gence is a family of cost functions parameterized by a single
shape parameter β that takes Itakura-Saito divergence (IS-
divergence), generalized Kullback-Leibler divergence (KL-
divergence), and Euclidean distance (EUC-distance) as spe-
cial cases (β=0, 1, and 2, respectively).

In PSNMF, to avoid the sharing of bases, we make H
as different as possible from F. We impose the following
minimization in addition to the cost function:

arg min
H

‖FTH‖2Fr, (4)

where the conditions
∑
ω fω,k = 1 and

∑
ω hω,l = 1 are ap-

plied, and ‖ · ‖Fr indicates the Frobenius norm. This mini-
mization corresponds to the maximization of orthogonality
between F and H. The cost function with the orthogonality
penalty is given by

J1 = JNMF + μ1‖FTH‖2Fr

= JNMF + μ1

∑
k,l

⎛⎜⎜⎜⎜⎜⎝
∑
ω

fω,khω,l

⎞⎟⎟⎟⎟⎟⎠
2

, (5)

where μ1 is the weighting parameter for the penalty term.
As another means for making H different from F, the

maximization of all divergence combinations between the
supervised bases in F and the other bases in H can be used,
which is given by

arg max
H

∑
k,l,ω

Dβm

(
fω,k‖hω,l) , (6)

where βm is the shape parameter of the divergence for this
penalty, and the conditions

∑
ω fω,k = 1 and

∑
ω hω,l = 1 are

applied. This maximization forces the other bases in H to
become different from the target spectral patterns. The cost
function with the maximum-divergence penalty is given by

J2 = JNMF + μ2 exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
λ

∑
k,l,ω

Dβm

(
fω,k‖hω,l)

⎞⎟⎟⎟⎟⎟⎟⎠, (7)

where μ2 and λ are the weighting and sensitivity parameters,
respectively. Here, exponentiation is applied to make the
penalty term nonnegative.

2.3 Auxiliary Functions

In this section, we derive the update rules based on the cost
functions Eqs. (5) and (7), similarly to [6]. Since it is dif-
ficult to analytically derive the optimal G, H, and U, we
define auxiliary functions J+1 and J+2 that represent the up-
per bounds ofJ1 andJ2, respectively. Here, we can rewrite
Eq. (2) as

JNMF =
∑
ω,t

⎧⎪⎪⎨⎪⎪⎩
y
β
ω,t

β (β − 1)
+

zβω,t
β
− yω,tz

β−1
ω,t

β − 1

⎫⎪⎪⎬⎪⎪⎭ , (8)

where zω,t is defined as

zω,t =
∑

k

fω,kgk,t +
∑

l

hω,lul,t. (9)

First, we define the upper bound for the second term on
the right-hand side of Eq. (8). This term is convex for β≥ 1
and concave for β < 1. If β satisfies β≥ 1, the upper bound
function Q(β)

ω,t is defined using auxiliary variables αω,t,k ≥ 0,
γω,t,l≥0, η1≥0, and η2≥0 that satisfy

∑
k αω,t,k=1,

∑
l γω,t,l=

1, and η1 + η2 = 1. Applying Jensen’s inequality to this, we
have

zβω,t
β
≤ 1
β

⎧⎪⎪⎨⎪⎪⎩
∑

k

αω,t,kη1

(
fω,kgk,t

αω,t,kη1

)β
+
∑

l

γω,t,lη2

(
hω,lul,t

γω,t,lη2

)β⎫⎪⎪⎬⎪⎪⎭
≡ Q(β)

ω,t. (10)

The equality in Eq. (10) holds if and only if the auxiliary
variables are set as follows:

αω,t,k =
(
fω,kgk,t

)
/
(∑

k′ fω,k′gk′,t
)
, (11)

γω,t,l =
(
hω,lul,t

)
/
(∑

l′hω,l′ul′,t
)
, (12)

η1 =
(∑

k fω,kgk,t
)
/
(∑

k′ fω,k′gk′,t +
∑

l′hω,l′ul′,t
)
, (13)

η2 =
(∑

lhω,lul,t
)
/
(∑

k′ fω,k′gk′,t +
∑

l′hω,l′ul′,t
)
. (14)

If β satisfies β< 1, the upper bound function R(β)
ω,t is defined

using the auxiliary variable σω,t ≥ 0. Applying the tangent
line inequality to this, we have

zβω,t
β
≤ σβ−1

ω,t
(
zω,t − σω,t) + σ

β
ω,t

β
≡ R(β)

ω,t. (15)

The equality in Eq. (15) holds if and only if the auxiliary
variable is set to

σω,t =
∑

k′
fω,k′gk′,t +

∑
l′

hω,l′ul′,t. (16)

Second, we define the upper bound function for the
third term on the right-hand side of Eq. (8). This term is con-
vex for β ≥ 2 and concave for β < 2. Similarly to Eqs. (10)
and (15), we can derive the auxiliary function for the third
term of Eq. (8) as

− zβ−1
ω,t

β − 1
≤

⎧⎪⎪⎨⎪⎪⎩
−Q(β−1)
ω,t (β ≥ 2)

−R(β−1)
ω,t (β < 2)

. (17)
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Third, for the orthogonality penalty term in Eq. (5),
the upper bound function P+ is defined using an auxiliary
variable δk,l,ω ≥ 0 that satisfies

∑
ω δk,l,ω = 1. Similarly to

Eq. (10), we obtain

μ1

∑
k,l

⎛⎜⎜⎜⎜⎜⎝
∑
ω

fω,khω,l

⎞⎟⎟⎟⎟⎟⎠
2

≤ μ1

∑
k,l,ω

f 2
ω,kh2

ω,l

δk,l,ω
≡ P+, (18)

where the equality in Eq. (18) holds if and only if the auxil-
iary variable is set to

δk,l,ω =
(
fω,khω,l

)
/
(∑
ω′ fω′,khω′,l

)
. (19)

Finally, using Eqs. (10), (15), (17), and (18), we can
define the upper bound functions J+1 and J+2 as

J+1 = J+NMF + P+, (20)

J+2 = J+NMF + μ2 exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
λ

∑
k,l,ω

Dβm

(
fω,k‖hω,l)

⎞⎟⎟⎟⎟⎟⎟⎠, (21)

where

J+NMF =
∑
ω,t

y
β
ω,t

β (β − 1)
+

∑
ω,t

S(β)
ω,t, (22)

S(β)
ω,t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R(β)
ω,t − yω,tQ(β−1)

ω,t (β < 1)

Q(β)
ω,t − yω,tQ(β−1)

ω,t (1 ≤ β ≤ 2)

Q(β)
ω,t − yω,tR(β−1)

ω,t (β > 2)

. (23)

2.4 Update Rules for PSNMF

The update rules with respect to each variable are deter-
mined by setting the gradient of the cost function to zero.
From ∂J+1 /∂hω,l = 0, we obtain

∑
t

(
V(β)
ω,t,l −W(β)

ω,t,l

)
+ 2μ1

∑
k

f 2
ω,khω,l

δk,l,ω
= 0, (24)

where

V(β)
ω,t,l =

⎧⎪⎪⎨⎪⎪⎩
σ
β−1
ω,t ul,t (β < 1)

hβ−1
ω,l

(
γω,t,lη2

)1−β uβl,t (β ≥ 1)
, (25)

W(β)
ω,t,l =

⎧⎪⎪⎨⎪⎪⎩
yω,th

β−2
ω,l

(
γω,t,lη2

)2−β uβ−1
l,t (β ≤ 2)

yω,tσ
β−2
ω,t ul,t (β > 2)

. (26)

By solving Eq. (24) for hω,l assuming nonnegativity, and
substituting Eqs. (11)–(14), (16), and (19) into the solution,
we can obtain the update rule of hω,l with the orthogonality
penalty as

hω,l ← hω,l

⎛⎜⎜⎜⎜⎜⎝
∑

t yω,tul,tz
β−2
ω,t∑

t ul,tz
β−1
ω,t + 2μ1

∑
k fω,k

∑
ω′ fω′,khω′,l

⎞⎟⎟⎟⎟⎟⎠
ϕ(β)

,

(27)

where ϕ (β) is given by

ϕ(β) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/(2 − β) (β < 1)

1 (1 ≤ β ≤ 2)

1/(β − 1) (β > 2)

. (28)

Similarly to Eq. (27), we can obtain the update
rule of hω,l with the maximum-divergence penalty from
∂J+2 /∂hω,l=0 as

hω,l ←hω,l

⎛⎜⎜⎜⎜⎜⎜⎝
λ
∑

t yω,tul,tz
β−2
ω,t +μ2hβm−1

ω,l Cβm

λ
∑

t ul,tz
β−1
ω,t +μ2hβm−2

ω,l Cβm

∑
k fω,k

⎞⎟⎟⎟⎟⎟⎟⎠
ϕ(β)

, (29)

where

Cβm = exp

⎛⎜⎜⎜⎜⎜⎜⎝−1
λ

∑
k,l,ω

Dβm

(
fω,k‖hω,l)

⎞⎟⎟⎟⎟⎟⎟⎠. (30)

The update rules of the activation matrices are obtained as
follows:

gk,t←gk,t

⎛⎜⎜⎜⎜⎜⎝
∑
ω fω,kyω,tz

β−2
ω,t∑

ω fω,kzβ−1
ω,t

⎞⎟⎟⎟⎟⎟⎠
ϕ(β)

, (31)

ul,t←ul,t

⎛⎜⎜⎜⎜⎜⎝
∑
ω hω,lyω,tz

β−2
ω,t∑

ω hω,lz
β−1
ω,t

⎞⎟⎟⎟⎟⎟⎠
ϕ(β)

. (32)

3. Experiment for Artificial Signals

3.1 Experimental Conditions

To confirm the efficacy of PSNMF, we compared the appli-
cability of PSNMF and conventional SNMF (μ1 = μ2 = 0 in
Eqs. (27) and (29)) to a separation task involving monau-
ral multiple instrumental sources. We produced the four
melodies depicted in Fig. 1. These instrumental signals were
artificially generated by a MIDI synthesizer. As the super-
vision sound for a priori training, we used the same MIDI
sounds of the target instruments containing two octave notes
that cover all the notes of the target signal in the observed
signal. The spectrograms were computed using a 92-ms-
long rectangular window with a half-size shift. The number
of iterations for the training and separation processes was
500. Moreover, the number of supervised bases in F was
100 and the number of the other bases in H was 50. In this
experiment, the parameters μ1, μ2, and λ were changed to

Fig. 1 Scores of each instrument.
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evaluate their dependence on the separation performance.
We conducted two experiments to consider two-source

and four-source cases. In the two-source case, the observed
signal Y was produced by mixing two sources selected from
four instruments with the same power. Therefore we pre-
pared 12 combinations of the observed signals. In the four-
source case, we produced an observed signal that consisted
of four instruments with the same power. Then we calcu-
lated the average evaluation scores for each combination of
the instruments.

In NMF decomposition, the parameter β of the diver-
gence directly affects the separation accuracy. Hence, we
used three values, namely, β = 0 (IS-divergence), β = 1
(KL-divergence), and β= 2 (EUC-distance). Also, we used
βm=0, 1, and 2 for the maximum-divergence penalty.

3.2 Experimental Results

We used the signal-to-distortion ratio (SDR), source-to-
interference ratio (SIR), and sources-to-artifacts ratio (SAR)
defined in [7] as the evaluation scores. SDR indicates the
quality of the separated target sound, SIR indicates the de-
gree of separation between the target and other sounds, and
SAR indicates the absence of artificial distortion. There-
fore, SDR indicates the total evaluation score that involves
SIR and SAR.

First, we depict the dependence of SDR values on the
parameters μ1, μ2, and λ in the two-source case, where only
β=1 is selected owing to the limit of the space because KL-
divergence-based NMF is often used for many signal sepa-
ration tasks. Figure 2 shows the variation of SDR values of
PSNMF with the orthogonality penalty. We plot the aver-
age SDR values of 12 combinations of the observed signals
and its deviation in the error bar. From this result, we can
confirm that the separation performance improves with in-
creasing the value of μ1 because of the prevention of basis
sharing, and high SDR values can be retained when μ1 is set
to be large enough. Figures 3–5 show the variation of SDR
values of PSNMF with the maximum-divergence penalty.
From these results, we can also prevent the basis-sharing
problem by setting the parameter μ2 to be large. However,
the fluctuation exists in the average SDR along with μ2; it
indicates a slight difficulty in optimizing the parameters in
the maximum-divergence penalty. In all cases regardless of

Fig. 2 Variation of SDR values of PSNMF with orthogonality penalty
when β=1 in two-source case. Circle and error bar represent average SDR
of 12 combinations of observed signals and its deviation, respectively.

the type of penalties, the deviation in 12 combinations of the
observed signals is within 4 dB. The other results of β = 0
and 2 showed the similar tendency to that of β=1.

Next, Tables 1, 2, and 3 show the average scores of
SDR, SIR, and SAR in the two-source case for each value
of β. Here, the SDR values are the average of 12 combina-
tions of the observed signals with optimization on the pa-
rameters μ1, μ2, and λ, and the SIR and SAR values are the
corresponding ones. Also, Tables 4, 5, and 6 show the av-
erage scores in the four-source case. From the SDR results,
we can confirm that conventional SNMF cannot achieve a
high separation accuracy owing to basis sharing between
the supervised bases and other bases, whereas the proposed
methods can avoid this basis-sharing problem by using the
penalty terms. In addition, the performances of the orthog-

Fig. 3 Variation of SDR values of PSNMF with maximum-divergence
penalty when β = 1 and βm = 0 in two-source case: (a) λ = 105 and (b)
λ=106. Circle and error bar represent average SDR of 12 combinations of
observed signals and its deviation, respectively.

Fig. 4 Variation of SDR values of PSNMF with maximum-divergence
penalty when β=1 and βm =1 in two-source case: (a) λ=1 and (b) λ=10.
Circle and error bar represent average SDR of 12 combinations of observed
signals and its deviation, respectively.



LETTER
1117

Fig. 5 Variation of SDR values of PSNMF with maximum-divergence
penalty when β = 1 and βm = 2 in two-source case: (a) λ = 10−4 and (b)
λ = 10−3. Circle and error bar represent average SDR of 12 combinations
of observed signals and its deviation, respectively.

Table 1 Average scores in two-source case of artificial signals (β=0).

Method SDR SIR SAR
Conventional SNMF 6.1 18.5 1.9

PSNMF with orthogonality penalty 9.6 17.8 6.7
PSNMF with maximum-divergence penalty (βm = 0) 9.3 16.9 6.3
PSNMF with maximum-divergence penalty (βm = 1) 8.5 14.5 6.2
PSNMF with maximum-divergence penalty (βm = 2) 8.9 18.1 5.1

Table 2 Average scores in two-source case of artificial signals (β=1).

Method SDR SIR SAR
Conventional SNMF 3.9 18.1 −0.2

PSNMF with orthogonality penalty 13.6 19.0 11.3
PSNMF with maximum-divergence penalty (βm = 0) 12.0 18.6 9.0
PSNMF with maximum-divergence penalty (βm = 1) 11.8 15.9 10.5
PSNMF with maximum-divergence penalty (βm = 2) 13.0 17.5 11.6

Table 3 Average scores in two-source case of artificial signals (β=2).

Method SDR SIR SAR
Conventional SNMF 6.7 18.4 3.4

PSNMF with orthogonality penalty 11.9 18.1 9.8
PSNMF with maximum-divergence penalty (βm = 0) 13.0 17.8 11.4
PSNMF with maximum-divergence penalty (βm = 1) 10.8 17.0 9.5
PSNMF with maximum-divergence penalty (βm = 2) 12.1 15.8 12.3

Table 4 Average scores in four-source case of artificial signals (β=0).

Method SDR SIR SAR
Conventional SNMF 6.9 14.9 3.6

PSNMF with orthogonality penalty 8.6 12.6 6.8
PSNMF with maximum-divergence penalty (βm = 0) 8.6 13.8 6.0
PSNMF with maximum-divergence penalty (βm = 1) 8.8 14.3 6.3
PSNMF with maximum-divergence penalty (βm = 2) 8.6 13.8 6.0

onality and maximum-divergence penalties are roughly the
same.

Figure 6 shows sample spectrograms after the separa-
tion, which extracts the cello signal from the observed signal

Table 5 Average scores in four-source case of artificial signals (β=1).

Method SDR SIR SAR
Conventional SNMF 7.1 14.2 4.3

PSNMF with orthogonality penalty 10.8 14.1 10.6
PSNMF with maximum-divergence penalty (βm = 0) 11.1 13.8 10.9
PSNMF with maximum-divergence penalty (βm = 1) 9.7 12.2 9.9
PSNMF with maximum-divergence penalty (βm = 2) 10.1 12.0 11.8

Table 6 Average scores in four-source case of artificial signals (β=2).

Method SDR SIR SAR
Conventional SNMF 7.3 13.0 6.4

PSNMF with orthogonality penalty 9.6 11.8 11.4
PSNMF with maximum-divergence penalty (βm = 0) 10.3 12.1 12.6
PSNMF with maximum-divergence penalty (βm = 1) 9.2 12.1 11.3
PSNMF with maximum-divergence penalty (βm = 2) 8.6 11.1 11.3

Fig. 6 Spectrograms of (a) observed signal consisting of cello and oboe,
(b) oracle signal of target cello signal, (c) cello signal extracted by con-
ventional SNMF, and (d) cello signal extracted by proposed PSNMF with
orthogonality penalty.

that consists of cello and oboe signals. The signal extracted
by conventional SNMF loses some of the target spectra (see
Fig. 6(c)) because of basis sharing, but the proposed method
extracts the target source with high accuracy (see Fig. 6(d)).

Finally, as another means of preventing the basis shar-
ing problem, some people may guess that the orthogonal-
ity penalty on activations, ‖GUT‖2Fr, can also be introduced
instead of the proposed penalty, ‖FTH‖2Fr. However, this
penalty term has a risk to force G to become 0, which yields
that the input matrix Y is represented using only the other
matrix HU. Indeed, for instance, the average SDR value
of KL-divergence-based PSNMF with this penalty term was
−8.8 dB in two source case, and the output signal did not
contain the sufficient target components.

4. Experiment for Real-Recorded Signals

4.1 Experimental Conditions

We also conducted another experiment using real-recorded
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Table 7 Average scores in two-source case of recorded signals (β=0).

Method SDR SIR SAR
Conventional SNMF 7.5 19.6 3.5

PSNMF with orthogonality penalty 10.6 19.1 11.8
PSNMF with maximum-divergence penalty (βm = 0) 10.5 18.2 7.1
PSNMF with maximum-divergence penalty (βm = 1) 10.5 17.2 7.3
PSNMF with maximum-divergence penalty (βm = 2) 10.5 19.7 6.7

Table 8 Average scores in two-source case of recorded signals (β=1).

Method SDR SIR SAR
Conventional SNMF 4.4 20.2 −0.1

PSNMF with orthogonality penalty 14.4 20.0 11.7
PSNMF with maximum-divergence penalty (βm = 0) 13.8 20.3 10.4
PSNMF with maximum-divergence penalty (βm = 1) 13.6 18.2 11.0
PSNMF with maximum-divergence penalty (βm = 2) 14.4 18.5 12.4

Table 9 Average scores in two-source case of recorded signals (β=2).

Method SDR SIR SAR
Conventional SNMF 7.5 19.6 3.5

PSNMF with orthogonality penalty 11.9 19.0 9.2
PSNMF with maximum-divergence penalty (βm = 0) 14.7 19.5 12.4
PSNMF with maximum-divergence penalty (βm = 1) 11.9 18.2 9.9
PSNMF with maximum-divergence penalty (βm = 2) 13.2 16.3 12.8

Table 10 Average scores in four-source case of recorded signals (β=0).

Method SDR SIR SAR
Conventional SNMF 8.3 17.4 4.6

PSNMF with orthogonality penalty 11.3 16.7 8.8
PSNMF with maximum-divergence penalty (βm = 0) 11.4 15.3 9.5
PSNMF with maximum-divergence penalty (βm = 1) 10.9 16.2 8.2
PSNMF with maximum-divergence penalty (βm = 2) 11.6 16.1 9.2

music signals. We recorded each instrumental solo signal
and the supervision sound, which are the same as those in
the previous section, in an experimental room whose rever-
beration time was 200 ms. The distance between a loud-
speaker and binaural microphone NEUMANN KU-100 was
1.5 m. The binaurally recorded signals in both ears were
mixed down to a monaural signal. The observed signal Y
was produced by mixing these recorded signals as the same
power. Other conditions were the same as those of the pre-
vious experiment, and we prepared the observed signals in
two-source and four-source cases.

4.2 Experimental Results

Tables 7, 8, and 9 show the average scores of SDR, SIR, and
SAR in the two-source case for each value of β. Here, the
SDR values are the average of 12 combinations of the ob-
served signals with optimization on the parameters μ1, μ2,
and λ, and the SIR and SAR values are the corresponding
ones. Also, Tables 10, 11, and 12 show the average scores
in the four-source case. From these results, we can confirm

Table 11 Average scores in four-source case of recorded signals (β=1).

Method SDR SIR SAR
Conventional SNMF 8.2 16.2 4.6

PSNMF with orthogonality penalty 13.4 16.2 12.4
PSNMF with maximum-divergence penalty (βm = 0) 14.0 15.3 12.0
PSNMF with maximum-divergence penalty (βm = 1) 12.2 16.1 11.6
PSNMF with maximum-divergence penalty (βm = 2) 13.0 16.2 11.6

Table 12 Average scores in four-source case of recorded signals (β=2).

Method SDR SIR SAR
Conventional SNMF 9.1 13.9 6.8

PSNMF with orthogonality penalty 12.3 15.1 11.6
PSNMF with maximum-divergence penalty (βm = 0) 12.9 15.0 13.2
PSNMF with maximum-divergence penalty (βm = 1) 11.9 14.3 12.5
PSNMF with maximum-divergence penalty (βm = 2) 10.3 11.8 12.2

that our proposed method can achieve higher separation ac-
curacy compared with the conventional method even in the
case of real-recorded signals.

5. Conclusion

In this study, we propose a new penalized SNMF with
two types of penalty that force the other bases to become
different from the target bases trained in advance. From
the experimental results, it can be confirmed that the pro-
posed method prevents the simultaneous generation of simi-
lar spectral patterns in the supervised bases and other bases,
and increases the separation performance compared with the
conventional method.
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