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1. Introduction

+ Recently, music signal separation technologies have received much
attention
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m Previous research
« Generalized minimum mean-square error short-time spectral amplitude
(MMSE-STSA) estimator[1], [2]
The amplitude spectrum of the target signal is enhanced on the basis of the MMSE
criterion.
Optimal Bayesian estimators based on the a priori target signal statistical model.
Generalized MMSE-STSA can enhance target signal in time-frequency domain.
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Y.(f,7): Observed signal S.(f,7):Targetsignal N.(f,7): Interference signal
f: Frequency bin T: Frame index *={R,I}: Real and imaginary parts of the signal

Applications
* Automatic music transcription
* Sound augmented reality (AR)
* 3D audio system, etc.

It is difficult to deal with nonstationary interference signals.

Priori statistical model of target signal cannot be determined automatically.
+ Supervised Nonnegative matrix factorization (SNMF) [3], [4]

Sparse representation and decomposition algorithm.

Use some sample sound of the target instrumental signal in a priori training in NMF.

NMF attempts to separate instrumental sources using spectral characteristics [5]

SNMF can deal with nonstationary signals.

The mixture model of NMF approximately assumes the additivity of amplitude spectrums.f
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Purpose of our research

To cope with the problems of Generalized MMSE-STSA estimator and
supervised NMF, we propose a signal separation technique which is based on
the right mixture model and can deal with nonstationary interference signals.

3. Proposed method

« We propose the use of SNMF as the interference signal estimator and
estimate the shape parameter p using higher-order statistics.
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» Regarding the chi distribution, shape parameter p can be written using
kurtosis.
kurtosis and shape parameter
=il
p = (kurtgarger — 1) > Generally, p.d.f. of the additive
signal is not additive.
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« Shape parameter of target signal can be estimated from kurtosis of target
signal amplitude spectrogram
« However, separation of statistics of additive signals are difficult.

To cope with the mathematical problem, we introduce the cumulant.

2. Generalized MMSE-STSA estimator

« Inthe generalized MMSE-STSA estimator, the a priori statistical model of
the target signal amplitude spectrum is set to chi distribution.
Chi- distribution
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T'(-): Gamma function P : Shape parameter

p(z): p.d.f. of signal x in the amplitude domain

»p =1 gives a Rayleigh distribution that corresponds to a Gaussian
distribution in the time domain.

» A smaller value of p corresponds to a supper-Gaussian distribution
signal.

+ The processedsignal S.(f,r)via the generalized MMSE-STSA estimator is
given as follows.

lized MMSE-STSA

_ Target signal estimation by g
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Problems of generalized MMSE-STSA estimator
> To calculate 7(f,7), dynamic estimation of Py (f) is required if the
interference signal is nonstationary.
» Estimation of the shape parameter p, which depends on the
type of target signal is required.

What is the cumulant?

» Cumulant K., is the statistic which can be convert uniquely from moment|
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» Cumulant holds the additivity
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into the sum of the cumulant.

Convert the deconvolution of the

Kurtosis estimation of target amplitude spectrum
« Using cumulant, we can estimate kurtosis of the target amplitude spectrum

as follows.

Kurtosis of target amplitude spectrogram (complex-domain)
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* In SNMF, only an amplitude spectrum is obtained.

* Represent above formula in amplitude-spectrogram domain assuming
that the real and imaginary parts are i.i.d.
» Assuming the i.i.d., we obtain the following relations.
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: Amplitude spectrogram of target signal
3 : Amplitude spectrogram of interference signal
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« Using these relations, we can rewrite kurtosis estimation formula as follows

Kurtosis of target amplitude spectrogram (amplitude-domain)
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All the estimates can be obtained from the result of SNMF without
using any waveforms.

» |Y| is obtained by observed signal.

» |N|is obtained by SNMF output.

kurtarget =

We can calculate kurtosis of target amplitude spectrogram in
closed-form

« Extract the target signal from observed signal.
« To confirm the effectiveness of the proposed method, we compared the
three conventional method with our proposed method.

Experimental condition

Target instruments

(MIDl) Ob., Cl., Ve.
Obse(r,:’f,g,f‘gna' Mixing two sources selected from three sources with the same power

Artificial MIDI sounds of the target instruments that consists two octave notes,

Supervision sound
(MIDI) which cover all notes of the target signal

Wiener filter + SNMF (WF+SNMF)
MMSE-STSA estimator(Gaussian distribution)+SNMF (MMSE-STSA+SNMF)
Generalized MMSE-STSA estimator + SNMF (Proposed method)

Signal to distortion ratio (SDR: quality of extracted signal),

Compared method

Evaluation scores [9]
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We can confirm that the separation performance of the proposed method is
better than those of the other methods.

This result indicates the efficacy of introducing the flexible a priori statistical
model of the target signal.

4. . Conclusi

* We propose a new approach for addressing music signal separation
based on the generalized Bayesian estimator with “automatic prior
adaptation”.

From the experimental evaluation, it is found that the proposed method
outperforms competitive methods, namely, simple SNMF, WF, and the
MMSE-STSA estimator with a fixed Gaussian prior.
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