MUSICAL SIGNAL SEPARATION BASED ON BAYESIAN SPECTRAL AMPLITUDE **ESTIMATOR WITH AUTOMATIC TARGET PRIOR ADAPTATION**

Yuki Murota, Daichi Kitamura, Shunsuke Nakai, Hiroshi Saruwatari, Satoshi Nakamura (Nara Institute of Science and Technology, Nara, Japan) Kazunobu Kondo, Yu Takahashi (Yamaha Corporation, Shizuoka, Japan)

1. Introduction

Recently music signal separation technologies have received much attention.

- Automatic music transcription Sound augmented reality (AR)
- 3D audio system, etc.

Previous research

Generalized minimum mean-square error short-time spectral amplitude (MMSE-STSA) estimator[1], [2]

The amplitude spectrum of the target signal is enhanced on the basis of the MMSE

Optimal Bayesian estimators based on the a priori target signal statistical model.

$$Y_*(f, \tau) = S_*(f, \tau) + N_*(f, \tau) *= \{R, I\}$$

 $\overline{Y_*(f,\tau)} : \text{Observed signal} \qquad S_*(f,\tau) : \text{Target signal} \qquad N_*(f,\tau) : \text{Interference signal}$ f : Frequency bin τ : Frame index $*=\{\mathrm{R},\mathrm{I}\}$: Real and imaginary parts of the signal

It is difficult to deal with nonstationary interference Priori statistical model of target signal cannot

Supervised Nonnegative matrix factorization (SNMF) [3] [4]

Sparse representation and decomposition algorithm.

Use some sample sound of the target instrumental signal in a priori training in NMF. NMF attempts to separate instrumental sources using spectral characteristics [5] SNMF can deal with nonstationary signals.

The mixture model of NMF approximately assumes the additivity of amplitude spectrums

$$|Y(f,\tau)|\!\simeq\!|S(f,\tau)|+|N(f,\tau)|$$

Purpose of our research

To cope with the problems of Generalized MMSE-STSA estimator and supervised NMF, we propose a signal separation technique which is based on the right mixture model and can deal with nonstationary interference signals.

2. Generalized MMSE-STSA estimator

In the generalized MMSE-STSA estimator, the a priori statistical model of the target signal amplitude spectrum is set to chi distribution

Chi- distribution

$$p(x) = \frac{2}{\Gamma(\rho)} \Biggl(\frac{\rho}{\mathrm{E}[x^2]} \Biggr)^{\rho} x^{2\rho-1} \mathrm{exp} \Biggl(\frac{\rho}{\mathrm{-E}\ [x^2]} x^2 \Biggr)$$

 ρ : Shape parameter

p(x): p.d.f. of signal x in the amplitude domain

- $\triangleright \rho$ = 1 gives a Rayleigh distribution that corresponds to a Gaussian on in the time domain
- \triangleright A smaller value of ρ corresponds to a supper-Gaussian distribution
- The processed signal $\, \tilde{S}_*(f,\tau) \, {
 m via} \,$ the generalized MMSE-STSA estimator is given as follows

Target signal estimation by generalized MMSE-STSA estimator

$$\begin{split} \tilde{S_*}(f,\tau) &= G(f,\tau)Y_*(f,\tau) \\ G(f,\tau) &= \frac{\sqrt{\nu(f,\tau)}}{\gamma(f,\tau)} \cdot \frac{\Gamma(\rho + 0.5)}{\Gamma(\rho)} \cdot \frac{\Phi(0.5 - \rho, 1, -\nu(f,\tau))}{\Phi(1 - \rho, 1, -\nu(f,\tau))} \end{split}$$

 $\tilde{S}_*(f,\tau)$: Estimated target signal

 $G(f,\tau)$: Gain function

 $P_{\mathcal{S}}(f)$: Interference signal power spectra α : Forgetting factor

 $\Phi\big(a,b;k\big) : \text{Confluent hypergeometric function} \quad \nu(f,\tau) = \tilde{\gamma}(f,\tau)\tilde{\xi}(f,\tau) \left(1 + \tilde{\xi}(f,\tau)\right)^{-1}$ $\tilde{\xi}(f,\tau) = \alpha \tilde{\gamma}(f,\tau-1)G^2(f,\tau) + (1-\alpha) {\rm max}[\gamma(f,\tau)-1,0] \text{: Priori SNR}$

 $\tilde{\gamma}(f,\tau) = (Y_{\mathrm{R}}^2 + Y_{\mathrm{L}}^2)/P_{\tilde{N}}(f)$: Posteriori SNR

Problems of generalized MMSE-STSA estimator

- \blacktriangleright To calculate $\tilde{\gamma}(f,\tau)$, dynamic estimation of $P_{\tilde{N}}(f)$ is required if the interference signal is nonstationary.
- \succ Estimation of the shape parameter ho , which depends on the type of target signal is required.

3. Proposed method

We propose the use of SNME as the interference signal estimator and estimate the shape parameter ho using higher-order statistics.

Regarding the chi distribution, shape parameter ρ can be written using

- Shape parameter of target signal can be estimated from kurtosis of target
- However, separation of statistics of additive signals are difficult.

Strategy

To cope with the mathematical problem, we introduce the cumulant.

What is the cumulant?

 \succ Cumulant κ_m is the statistic which can be convert uniquely from moment

$$\kappa_m(x) = f(\mu_1(x), \mu_2(x), ..., \mu_m(x)) \mu_m(x) = g(\kappa_1(x), \kappa_2(x), ..., \kappa_m(x))$$

Cumulant holds the additivity

$$\kappa_m(Y_*) = \kappa_m(S_* + N_*) = \kappa_m(S_*) + \kappa_m(N_*)$$

Convert the deconvolution of the moment into the sum of the cumulant

Kurtosis estimation of target amplitude spectrum

Using cumulant, we can estimate kurtosis of the target amplitude spectrum

Kurtosis of target amplitude spectrogram (complex-domain)

$$\text{kurt}_{\text{target}} = \frac{\mu_4((S_{\text{R}}^2 + S_{\text{I}}^2)^{\frac{1}{2}})}{\mu_2^2((S_{\text{R}}^2 + S_{\text{I}}^2)^{\frac{1}{2}})} = \frac{\mathcal{N}(\mu_m(Y_{\text{R}}), \mu_m(Y_{\text{I}}), \mu_m(N_{\text{R}}), \mu_m(N_{\text{I}}))}{\mathcal{D}(\mu_m(Y_{\text{R}}), \mu_m(Y_{\text{I}}), \mu_m(N_{\text{R}}), \mu_m(N_{\text{I}}))}$$

$$\mathcal{N}(\mu_m(Y_{\text{R}}), \mu_m(Y_{\text{I}}), \mu_m(N_{\text{R}}), \mu_m(N_{\text{I}}))$$

$$\mathcal{D}(\mu_m(Y_{\text{R}}), \mu_m(Y_{\text{I}}), \mu_m(N_{\text{R}}), \mu_m(N_{\text{I}}))$$

$$\mathcal{D}(\mu_m(Y_{\text{R}}), \mu_m(Y_{\text{I}}), \mu_m(N_{\text{R}}), \mu_m(N_{\text{R}}), \mu_m(N_{\text{R}}))$$

 $= \mu_4(Y_R) + \mu_4(Y_I) - \mu_4(N_R) - \mu_4(N_I)$

- $+2\mu_2(N_{\rm B})\mu_2(N_{\rm I}) 6\mu_2(Y_{\rm B})\mu_2(N_{\rm B})$
- $+6u^{2}(N_{P})+6u^{2}(N_{I})+2u_{0}(Y_{P})u_{0}(Y_{I})$

- $-6\mu_2(Y_1)\mu_2(N_1) 2\mu_2(Y_2)\mu_2(N_1)$
- $-2\mu_2(Y_1)\mu_2(N_B)$
- $D(\mu_m(Y_P), \mu_m(Y_I), \mu_m(N_P), \mu_m(N_I))$
 - $= \mu_2^2(Y_R) + \mu_2^2(Y_I) + \mu_2^2(N_R) + \mu_2^2(N_I)$ $+2\mu_2(Y_R)\mu_2(Y_I) - 2\mu_2(Y_R)\mu_2(N_R)$
 - $-2\mu_2(Y_R)\mu_2(N_I) 2\mu_2(Y_I)\mu_2(N_R)$
 - $-2\mu_2(Y_{\rm I})\mu_2(N_{\rm I}) + 2\mu_2(N_{\rm R})\mu_2(N_{\rm I})$
- In SNMF, only an amplitude spectrum is obtained.

- Represent above formula in amplitude-spectrogram domain assuming that the real and imaginary parts are i.i.d.
- Assuming the i.i.d., we obtain the following relations

$$\begin{split} \mu_2(Y_{\rm R}) &= \mu_2(Y_{\rm I}) = \frac{1}{2} \mu_2(|Y|) \\ \mu_2(N_{\rm R}) &= \mu_2(N_{\rm I}) = \frac{1}{2} \mu_2(|N|) \\ \mu_2(N_{\rm R}) &= \mu_2(N_{\rm I}) = \frac{1}{2} \mu_2(|N|) \\ \end{split} \qquad \mu_4(N_{\rm R}) &+ \mu_4(N_{\rm I}) = \mu_4\left(|N|\right) - \frac{1}{2} \mu_2^2(|N|) \end{split}$$

 $|Y| = (Y_{\rm R}^2 + Y_{\rm I}^2)^{\frac{1}{2}}$: Amplitude spectrogram of target signal $|N| = (N_{\rm R}^2 + N_{\rm I}^2)^{\frac{1}{2}}$: Amplitude spectrogram of interference signal Using these relations, we can rewrite kurtosis estimation formula as follows

Kurtosis of target amplitude spectrogram (amplitude-domain) $\mu_4(|Y|) - \mu_4\left(|N|\right) + 4\mu_2^2(|N|) - 4\mu_2(|Y|)\mu_2(|N|)$ $\mu_2^2(|Y|) + \mu_2^2(|N|) - 2\mu_2(|Y|)\mu_2(|N|)$

All the estimates can be obtained from the result of SNMF without using any waveforms.

- $\triangleright |Y|$ is obtained by observed signal.
- $\triangleright |N|$ is obtained by SNMF output.

We can calculate kurtosis of target amplitude spectrogram in closed-form

4. . Evaluation experiment

- Extract the target signal from observed signal.
- To confirm the effectiveness of the proposed method, we compared the three conventional method with our proposed method.

Experimental condition

I	Target instruments (MIDI)	Ob., Cl., Vc.
	Observed signal (MIDI)	Mixing two sources selected from three sources with the same power
	Supervision sound (MIDI)	Artificial MIDI sounds of the target instruments that consists two octave notes, which cover all notes of the target signal
	Compared method	SNMF Wiener filter + SNMF (WF+SNMF) MMSE-STSA estimator(Gaussian distribution) + SNMF (MMSE-STSA+SNMF) Generalized MMSE-STSA estimator + SNMF (Proposed method)
ı	Evaluation scores [9]	Signal to distortion ratio (SDR: quality of extracted signal),

the interference spectrogram estimated by SNMF.

- We can confirm that the separation performance of the proposed method is hetter than those of the other methods
- This result indicates the efficacy of introducing the flexible a priori statistical model of the target signal

4. . Conclusion

- We propose a new approach for addressing music signal separation based on the generalized Bayesian estimator with "automatic prior adaptation".
- From the experimental evaluation, it is found that the proposed method outperforms competitive methods, namely, simple SNMF, WF, and the MMSE-STSA estimator with a fixed Gaussian prior.

References

Andrianakis, P. R. White, "MMSE speech spectral amplitude estimators with chi and gamma speech priors," *Proc. IEEE International inference on Acoustics, Speech and Signal Processing*, vol. 1071, pp.11-1058-111-1071, 2005.

Gerithapp, M. Kinschey, R. Marin, "Parameterede MMSE specific an Inagolitude estimation for the enhancement of noisy speech," *Proc. Elementational Conference on Acoustics, Speech and Signal Processing*, pp. 4037–4040, 2006.

Final Processing Sp. 4014, "Assistantia, Supported and series-upported separation of sources from single-channel mixtures," *Proc. 7th*